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Chapter 5 – Compilers 
 
5.1 Basic Compiler Functions 

 Fig 5.1 shows an example Pascal program for the 
following explanations. 

 
 For the purposes of compiler construction, a high-level 

programming language is usually described in terms of 
grammar.  
This grammar specifies the form, or syntax, of legal 
statements in the language. 
The problem of compilation then becomes one of 
matching statements written by the programmer to 
structures defined by the grammar, and generating the 
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appropriate object code for each statement. 
 A source program statement can be regarded as a 

sequence of tokens rather than simply as a string of 
characters.  
Tokens may be thought of as the fundamental building 
blocks of the language. For example, a token might be a 
keyword, a variable name, an integer, an arithmetic 
operator, etc. 

 The task of scanning the source statement, recognizing 
and classifying the various tokens, is known as lexical 
analysis. The part of the compiler that performs this 
analytic function is commonly called the scanner. 

 After the token scan, each statement in the program must 
be recognized as some language construct, such as a 
declaration or an assignment statement, described by the 
grammar. 
This process, called syntactic analysis or parsing, is 
performed by a part of the compiler that is usually called 
the parser. 

 The last step in the basic translation process is the 
generation of object code. Most compilers create 
machine-language programs directly instead of producing 
a symbolic program for later translation by an assembler. 

 Although we have mentioned three steps in the 
compilation process – scanning, parsing, and code 
generation – it is important to realize that a compiler does 
not necessarily make three passes over the program 
being translated. 
For some languages, it is quite possible to compile a 
program in a single pass. 
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5.1.1 Grammars 
 A grammar for a programming language is a formal 

description of the syntax, or form, of programs and 
individual statements written in the language. 

 The grammar does not describe the semantics, or 
meaning, of the various statements; such knowledge 
must be supplied in the code-generation routines. 
Example: for the difference between syntax and 
semantics, consider the two statements (I := J + K) and 
(X := Y + I), where X and Y are REAL variables and I, J, K 
are INTEGER variables. 
These two statements have identical syntax. However, 
the semantics of the two statements are quite different. 
The first statement specifies that the variables in the 
expression are to be added using integer arithmetic 
operations. The second statement specifies a 
floating-point addition, with the integer operand I being 
converted to floating point before adding. 

 Obviously, these two statements would be compiled into 
very different sequences of machine instructions. 
However, they would be described in the same way by 
the grammar. 
The differences between the statements would be 
recognized during code generation. 

 A number of different notations can be used for writing 
grammars. The one we describe is called BNF (for 
Backus-Naur Form). Fig 5.2 gives one possible BNF 
grammar for a highly restricted subset of Pascal. 
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 A BNF grammar consists of a set of rules, each of which 

defines the syntax of some construct in the programming 
language. 
For example, Rule 13 in Fig 5.2: <read> ::= READ 
( <id-list> ). This is a definition of the syntax of a Pascal 
READ statement that is denoted in the grammar as 
<read>. 
The symbol ::= can be read “is defined to be”. On the left 
of this symbol is the language construct being defined, 
<read>, and on the right is a description of the syntax 
being defined for it. 

 Character strings enclosed between the angle brackets < 
and > are called nonterminal symbols (such as ‘<read>’ 
and ‘<id-list>’). These are the names of constructs 
defined in the grammar. 
Entries not enclosed in angle brackets are terminal 
symbols of the grammar (i.e., tokens, such as ‘READ’, ‘(‘, 
and ‘)’). 
The blank spaces in the grammar rules are not significant. 
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They have been included only to improve readability. 
 To recognize a <read> (to resolve all nonterminal 

symbols), we also need the definition of <id-list>. This is 
provided by Rule 6 in Fig 5.2.   <id-list> ::= id | 
<id-list>, id 
This rule offers two possibilities, separated by the | 
symbol, for the syntax of an <id-list>. 
The first alternative specifies that an <id-list> may consist 
simply of a token id (the notation id denotes an identifier 
that is recognized by the scanner). 
The second alternative is an <id-list>, followed by the 
token “,” (comma), followed by a token id. 
Example: ALPHA is an <id-list> that consists of a single 
id ALPHA; ALPHA , BETA is an <id-list> that consists of 
another <id-list> ALPHA, followed by a comma, followed 
by an id BETA, and so forth. 

 It is often convenient to display the analysis of a source 
statement in terms of a grammar as a tree. This tree is 
usually called the parse tree, or syntax tree, for the 
statement. Fig 5.3(a) shows the parse tree for the 
statement READ ( VALUE ). 
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 Rule 9 of the grammar in Fig 5.2 provides a definition of 
the syntax of an assignment statement: 
<assign> ::= id := <exp> 
That is, an <assign> consists of an id, followed by the 
token :=, followed by an expression <exp>. 

 Rule 10 gives a definition of an <exp>: 
<exp> ::= <term> | <exp> + <term> | <exp> - <term> 

 Continuously, Rule 11 defines a <term> to be any 
sequence of <factor>s connected by * and DIV. 

 Again, Rule 12 specifies that a <factor> may consist of an 
identifier id or an integer int (which is also recognized by 
the scanner) or an <exp> enclosed in parentheses. 

 Fig 5.3(b) shows the parse tree for statement 14 from Fig 
5.1 in terms of the rules just described. 
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Note that the parse tree in Fig 5.3(b) implies that 
multiplication and division are done before addition and 
subtraction (that is, multiplication and division have higher 
precedence than addition and subtraction). The terms 
SUMSQ DIV 100 and MEAN * MEAN must be calculated 
first since these intermediate results are the operands 
(left and right subtrees) for the – operation. 

 The parse trees shown in Fig 5.3 represent the only 
possible ways to analyze these two statements in terms 
of the grammar of Fig 5.2. If there is more than one 
possible parse tree for a given statement, the grammar is 
said to be ambiguous. 

 Fig 5.4 shows the parse tree for the entire program in Fig 
5.1. 
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5.1.2 Lexical Analysis 

 Lexical analysis involves scanning the program to be 
compiled and recognizing the tokens that make up the 
source statements. Scanners are usually designed to 
recognize keywords, operators, and identifiers, as well as 
integers, floating-point numbers, character strings, and 
other similar items. 

 Items such as identifiers and integers are usually 
recognized directly as single tokens and might be defined 
as a part of the grammar. For example, 
<ident> ::= <letter> | <ident> <letter> | <ident> <digit> 
<letter> ::= A | B | C | … | Z 
<digit> ::= 0 | 1 | …| 9 

 The output of the scanner consists of a sequence of 
tokens. For efficiency of later use, each token is usually 
represented by some fixed-length code, such as an 
integer, rather than as a variable-length character string. 
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In such a token coding scheme for the grammar of Fig 5.2 
(shown in Fig 5.5), the token PROGRAM would be 
represented by the integer value 1, an identifier id would 
be represented by the value 22, and so on. 

 
 When the token being scanned is a keyword or an 

operator, such a coding scheme gives sufficient 
information. However, in the case of identifier, it is also 
necessary to specify the particular identifier name that 
was scanned. 
The same is true for integers, floating-point values, 
character-string constants, etc. 
This can be accomplished by associating a token 
specifier with the type code for such tokens. The specifier 
gives the identifier name, integer value, etc., that was 
found by the scanner. 
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 Fig 5.6 shows the output from a scanner for the program 
in Fig 5.1, using the token coding scheme in Fig 5.5. 

 
For token type 22 (identifier), the token specifier is a 
pointer to a symbol-table entry (denoted be ^SUM, 
^SUMSQ, etc.). 
For token type 23 (integer), the specifier is the value of 
the integer (denoted by #0, #100, etc.). 

 The scanner usually is responsible for reading the lines of 
the source program as needed, and possibly for printing 
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the source listing. Comments are ignored by the scanner, 
except for printing on the output listing. 

 The process of lexical scanning is quite simple. However, 
many languages have special characteristics that must be 
considered when programming a scanner. 
For example, in FORTRAN, a number in columns 1-5 of a 
source statement should be interpreted as a statement 
number, not as an integer. 

 Languages that do not have reserved words create even 
more difficulties for the scanner. 
For example, in FORTRAN, any keyword may also be 
used as an identifier (See the case in the lower part of 
page 237). 
In such a case, the scanner might interact with the parser 
so that it could tell the proper interpretation of each word, 
or it might simply place identifiers and keywords in the 
same class, leaving the task of distinguishing between 
them to the parser. 

Modeling Scanners as Finite Automata 
 The tokens of most programming languages can be 

recognized by a finite automaton. Finite automata are 
often represented graphically, as illustrated in Fig 5.7(a).  
States are represented by circles, and transitions by 
arrows from one state to another. Each arrow is labeled 
with a character or a set of characters that cause the 
specified transition to occur. 

 Consider, for example, the finite automaton shown in Fig 
5.7(a) and the first input string in Fig 5.7(b). 
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The automaton starts in State 1 and examines the first 
character of the input string. The character α causes the 
automaton to move from State 1 to State 2. 
The b causes a transition from State 2 to State 3, etc. 

 The first two input strings in Fig 5.7(b) can be recognized 
by the finite automaton in Fig 5.7(a). 
Consider the third input string in Fig 5.7(b). The finite 
automaton beings in State 1, as before, and the α causes 
a transition from State 1 to State 2. 
Now the next character to be scanned is c. However, 
there is no transition from State 2 that is labeled with c. 
Therefore, the automaton must stop in State 2. 

 Fig 5.8 shows several finite automata that are designed to 
recognize typical programming language tokens. 
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Fig 5.8(a) recognizes identifiers and keywords that begin 
with a letter and may continue with any sequence of 
letters and digits. 
Some languages allow identifiers such as NEXT_LINE, 
which contains the underscore character (_). Fig 5.8(b) 
shows a finite automaton that recognizes identifiers of this 
type. 
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The finite automaton in Fig 5.8(c) recognizes integers that 
consist of a string of digits, including those that contain 
leading zeroes, such as 000025. 
Fig 5.8(d) shows an automaton that does not allow 
leading zeroes, except in the case of the integer 0. 

 Each of the finite automata we have seen so far was 
designed to recognize one particular type of token. Fig 
5.9 shows a finite automaton that can recognize all of the 
tokens listed in Fig 5.5. 

 In Fig 5.9, a special case occurs in State 3. Suppose that 
the scanner encounters an erroneous token such as 
“VAR.”. 

 
When the automaton stops in State 3, the scanner should 
perform a check to see whether the string being 
recognized is “END.”. 
If it is not, the scanner could back up to State 2 
(recognizing the “VAR”). The period would then be 
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rescanned as part of the following token the next time the 
scanner is called. 

 Finite automata provide an easy way to visualize the 
operation of a scanner. Fig 5.10(a) shows a typical 
algorithm to recognize such a token. 
Fig 5.10(b) shows the finite automaton from Fig 5.8(b) 
represented in a tabular form. 
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5.1.3 Syntactic Analysis 
 During syntactic analysis, the source statements written 

by the programmer are recognized as language 
constructs described by the grammar being used. 

 We may think of this process as building the parse tree for 
the statements. Parsing techniques are divided into two 
general classes – bottom-up and top-down – according to 
the way in which the parse tree is constructed. 
Top-down methods (ex. recursive-descent parsing) begin 
with the rule of the grammar that specifies the goal of the 
analysis (i.e., the root of the tree), and attempt to 
construct the tree so that the terminal nodes match the 
statements being analyzed. 
Bottom-up methods (ex. operator-precedence parsing) 
begin with the terminal nodes of the tree (the statements 
being analyzed), and attempt to combine these into 
successively higher-level nodes until the root is reached. 

 A large number of different parsing techniques have been 
devised, most of which are applicable only to grammars 
that satisfy certain condition. 

Operator-Precedence Parsing 
 The bottom-up parsing technique we consider is called 

the operator precedence method. This method is based 
on examining pairs of consecutive operators in the source 
program, and making decisions about which operation 
should be performed first. 
For example, the arithmetic expression “A + B * C – D”. 
According to usual rules of arithmetic, * and / have higher 
precedence than + and –. If we examine the first two 
operators + and *, we find that + has lower precedence 
than *. This is often written as “+ < *”. 
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Similarly, for the next part pair of operators * and –, we 
would find that * has higher precedence than –. We may 
write this as “* > –”. 

 A + B * C – D 

<  > 

This implies that the subexpression B*C is to be 
computed before either of the other operations in the 
expression is performed. 

 The first step in constructing an operator-precedence 
parser is to determine the precedence relations between 
the operators of the grammar. In this context, operator is 
taken to mean any terminal symbol (i.e., any token), so 
we also have precedence relations involving tokens such 
as BEGIN, READ, id, etc. 
The matrix in Fig 5.11 shows these precedence relations 
for the grammar in Fig 5.2. 
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 The relation ≐ indicates that the two tokens involved 
have equal precedence and should be recognized by the 
parser as part of the same language construct. 

 Note that the precedence relations do not follow the 
ordinary rules for comparisons.  
For example, we have “; > END” but “END > ;”. 
That is, when ; is followed by END, the ; has higher 

precedence. 
But when END is followed by ;, the END has higher 
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precedence. 
 Also note that in many cases, there is no precedence 

relation between a pair of tokens. This means that these 
two tokens cannot appear together in any legal statement. 
If such a combination occurs during parsing, it should be 
recognized as a syntax error. 

 There are algorithmic methods for constructing a 
precedence matrix like Fig 5.11 from a grammar [see, for 
example, Aho et al. (1998)]. For the operator-precedence 
parsing method to be applied, it is necessary that all the 
precedence relations be unique. 

 Fig 5.12 shows the application of the 
operator-precedence parsing method to the READ 
statement from line 9 of the program in Fig 5.1. 

 
The statement is scanned from left to right, one token at a 
time. For each pair of operators, the precedence relation 
between them is determined. 
Part (ii) of Fig 5.12 shows the statement being analyzed 

Written by WWF １９



System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck 

Written by WWF ２０

with id replaced by <N1>. 

Part (ii) of Fig 5.12 also shows the precedence relations 
that hold in the new version of the statement. An 
operator-precedence parser generally uses a stack to 
save tokens that have been scanned but yet parsed, so it 
can reexamine them in this way. 
Precedence relations hold only between terminal symbols, 
so <N1> is not involved in this process, and a relationship 
is determined between ( and ). 

 Fig 5.13 shows a similar step-by-step parsing of the 
assignment statement from line 14 of the program in Fig 
5.1. 
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Note that the left-to-right scan is continued in each step 
only far enough to determine the next portion of the 
statement to be recognized, which is the first portion 
delimited by < and >. 
Once this portion has been determined, it is interpreted as 
a nonterminal according to some rule of the grammar. 

 This process continues until the complete statement is 
recognized. Note that (see Fig 5.13) each portion of the 
parse tree is constructed from the terminal nodes up 
toward the root, hence the term bottom-up parsing. 
Although we have illustrated operator-precedence 
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parsing only on single statements, the same techniques 
can be applied to an entire program. 

 Behind the operator precedence technique, a more 
general method known as shift-reduce parsing was 
developed.  
Shift-reduce parsers make use of a stack to store tokens 
that have not yet been recognized in terms of the 
grammar. 
The actions of the parser are controlled by entries in a 
table, somewhat similar to the precedence matrix 
discussed before. 
The two main actions are shift (push the current token 
onto the stack) and reduce (recognize symbols on top of 
the stack according to a rule of the grammar). 

 Fig 5.14 illustrates this shift-reduce process, using the 
same READ statement considered in Fig 5.12. The token 
currently being examined by the parser is indicated by 
↑. 
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In Fig 5.14(a), the parser shifts (pushing the currently 
token onto the stack) when it encounters the token 
BEGIN. 
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In Fig 5.14 (b-d), similar to the action in Fig 5.14(a). 
In Fig 5.14(e), when parser examines the token ), the 
reduce action is invoked. A set of tokens from the top of 
the stack (in this case, the single token id) is reduced to a 
nonterminal symbol from the grammar (in this case, 
<id-list>). 
In Fig 5.14(f), the token ) is considered again. This time, it 
will be pushed onto the stack, to be reduced later as part 
of the READ statement. 

 For this simple type of grammar, shift roughly 
corresponds to the action taken by an 
operator-precedence parser when it encounters the 
relations < and ≐. Reduce roughly corresponds to the 
action taken when an operator-precedence parser 
encounters the relation >. 

Recursive-Descent Parsing 
 The other parsing technique is a top-down method known 

as recursive descent. A recursive descent parser is made 
up of a procedure for each nonterminal symbol. 

 As an example for illustrating the parsing process of a 
recursive descent parser, consider Rule 13 of the 
grammar in Fig 5.2. 
The procedure for <read> in a recursive-decent parser 
first examines the next two input tokens, looking for 
READ and (. 
If these are found, the procedure for <read> then calls the 
procedure for <id-list>. 
If that procedure (for <id-list>) succeeds, the <read> 
procedure examines the next input token, looking for ). 
If all these tests are successful, the <read> procedure 



System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck 

Written by WWF ２６

returns an indication of success to its caller and advances 
to the next token following ). 
Otherwise, the <read> procedure returns an indication of 

failure. 
 When there are several alternatives defined by the 

grammar for a nonterminal, the procedure is only slightly 
more complicated. For the recursive-descent technique, it 
must be possible to decide which alternative to use by 
examining the next input token. 
For example, the procedure for <stmt> looks at the next 
token to decide which of its four alternatives to try. 
If the token is READ, it calls the procedure for <read>;  
if the token is id, it calls the procedure for <assign> 
because this is the only alternative that can begin with the 
token id, and so on. 

 There is a problem. For example, the procedure for 
<id-list>, corresponding to Rule 6, would be unable to 
decide between its two alternatives since id and <id-list> 
can begin with id. 
If the procedure decided to try the 2nd alternative (<id-list>, 
id), it would immediately call itself recursively to find an 
<id-list>. This could result in another immediate recursive 
call, which leads to an unending chain. 
The reason for this is that one of the alternatives for 
<id-list> begins with <id-list>. 
Therefore, top-down parsers cannot be directly used with 
a grammar that contains this kind of immediate left 
recursion. 

 Fig 5.15 shows the grammar from Fig 5.2 with left 
recursion eliminated. 
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 Top-down parsing using new grammar: Consider Rule 6a 

in Fig 5.15. 
This notation specifies that the terms between {and} may 
be omitted, or repeated one or more times. 
Thus, Rule 6a defines <id-list> as being composed of an 
id followed by zero or more occurrences of “, id”. 
This is clearly equivalent to Rule 6 of Fig 5.2. 

 Fig 5.16 illustrates a recursive-descent parse of the 
READ statement on line 9 of Fig 5.1, using the grammar 
in Fig 5.15. 
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Fig 5.16(a) shows the procedures for the nonterminals 
<read> and <id-list>. 
Assume that the variable TOKEN contains the type of the 
next input token, using the coding scheme shown in Fig 
5.5. 

 Fig 5.16(b) (corresponding to the algorithms in Fig 5.16(a)) 
gives a graphic representation of the recursive-descent 
parsing process for the statement being analyzed. 
In part (i), the READ procedure has been invoked and 
has examined the tokens READ and ( from the input 
stream (indicated by the dashed lines). 
In part (ii), READ has called IDLIST (indicated by the solid 
line), which has examined the token id. 
In part (iii), IDLIST has returned to READ, indicating 
success; READ has then examined the input token ). 
This completes the analysis of the source statement. The 
procedure READ will now return to its caller, indicating 
that a <read> was successfully found. 

 Fig 5.17 illustrates a recursive-descent parse of the 
assignment statement on line 14 of Fig 5.1. 
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Fig 5.17(a) shows the procedures (ASSIGN, EXP, TERM, 
FACTOR) for the nonterminal symbols that are involved in 
parsing this statement. You should carefully compare 
these procedures to the corresponding rules of the 
grammar. 
Fig 5.17(b) is a step-by-step representation of the 
procedure calls and token examinations similar to that 
shown in Fig 5.16(b). 
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 Note that the same technique can be applied to an entire 
program. 
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5.1.4 Code Generation 
 The code-generation technique we describe involves a 

set of routines, one for each rule or alternative rule in the 
grammar. When the parser recognizes a portion of the 
source program according to the some rule of the 
grammar, the corresponding routine is executed. Such 
routines are often called semantic routines. 

 Note that code-generation techniques need not be 
associated with any particular parsing method. 

 Assume that our code-generation routines make use of 
two data structures for working storage: a list and a stack. 
Items inserted into the list are removed in the order of 
their insertion, first-in-first-out. 
Items pushed onto the stack are removed (popped from 
the stack) in the opposite order, last-in-first-out. 
In addition, LISTCOUNT is used to keep a count of the 
number of items currently in the list. 
The code-generation routines also make use of the token 
specifiers; these specifiers are denoted by S(token). For a 
token id, S(id) is the name of the identifier, or a pointer to 
the symbol-table entry for it. 

 Fig 5.18 illustrates the application of our code-generation 
process to the READ statement of line 9 of the program in 
Fig 5.1. The parse tree for this statement is repeated for 
convenience in Fig 5.18(a). 
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Fig 5.18(c) shows a symbolic representation of the object 
code to be generated for the READ statement. This code 
consists of a call to a subroutine XREAD, which would be 
part of a standard library associated with the compiler. 
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Since XREAD may be used to perform any READ 
operation, it must be passed parameters that specify the 
details of the READ. In this case, the parameter list for 
XREAD is defined immediately after the JSUB that call it. 
Thus, the 2nd line in Fig 5.18(c) specifies that one variable 
is to be read (WORD  1), and the 3rd line gives the 
address of this variable. 

 Fig 5.18(b) shows a set of routines that might be used to 
accomplish this code generation. 
The first two routines correspond to alternative structures 
for <id-list>, which are shown in Rule 6 of the grammar in 
Fig 5.2. 
In either case, the token specifier S(id) for a new identifier 
being added to the <id-list> is inserted into the list used by 
the code-generation routines, and LISTCOUNT is 
updated to reflect this insertion. 
After the entire <id-list> has been parsed, the list contains 
the token specifiers for all the identifiers that are part of 
the <id-list>. 
When the <read> statement is recognized, these token 
specifiers are removed from the list and used to generate 
the object code for the READ. (See code generation 
routine <read> in Fig 5.18(b) in page 262.) 

 Remember that, in generating the tree shown in Fig 
5.18(a), recognizes first <id-list> and then <read>. At 
each step, the parser calls the appropriate 
code-generation routine. 

 Fig 5.19 shows the code-generation process for the 
assignment statement on line 14 of Fig 5.1. 
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Fig 5.19(a) displays the parse tree for this statement. 
Most of the work of parsing involves the analysis of the 
<exp> on the right-hand side of the :=. 
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The parser first recognizes the id SUMSQ as a <factor> 
and a <term>. 
Then it recognizes the int 100 as a <factor>. 
Then it recognizes SUMSQ DIV 100 as a <term>, and so 

forth. 
Note that the order of parsing the statement is the same 
as the order of arithmetic evaluation. 

 As each portion of the statement is recognized, a 
code-generation routine is called to create the 
corresponds object code. For example, suppose we want 
generate code that corresponds to the rule <term>1 ::= 
<term>2 * <factor>. 

Our code-generation routines perform all arithmetic 
operations using register A, so we clearly need to 
generate a MUL instruction in the object code. 
The result of this multiplication, <term>1, will be left in 
register A by the MUL. 
If either <term>2 or <factor> is already present in register 
A, perhaps as the result of a previous computation, the 
MUL instruction is all we need. 
Otherwise, we must generate a LDA instruction preceding 
the MUL. In this case, the previous value in register A 
must be saved (store somewhere) if it will be required for 
later use. 

 Obviously, we need to keep track of the result left in 
register A by each segment of code that is generated. 
In the example just discussed, the node specifier 
S(<term>1) would be set to rA, indicating that the result of 
this computation is in register A. 
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The variable REGA is used to indicate the highest-level 
node of the parse tree whose value is left in register A by 
the code generated so far (i.e., the node whose specifier 
is rA) 

 As an illustration of these ideas, consider again the code- 
generation routine in Fig 5.19(b) that corresponds to the 
rule 
<term>1 ::= <term>2 * <factor> 

If the node specifier for either operand is rA, the 
corresponding value is already in register A, so the 
routine simply generates a MUL instruction. The operand 
address for this MUL is given by the node specifier for the 
other operand (the one not in the register). 
Otherwise, the procedure GETA (shown in Fig 5.19(c)) is 
called. This procedure generates a LDA instruction to 
load the value associated with <term>2 into register A. 

However, before the LDA, the procedure generates a STA 
instruction to save the value currently in register A. 
After the necessary instructions are generated, the code- 
generation routine sets S(<term>1) and REGA to indicate 
that the value corresponding to <term>1 is now in register 
A. This completes the code-generation actions for the * 
operation. 

 The code-generation routine that corresponding to the “+” 
operation is almost identical to the one just discussed for 
*. 
The routines for DIV and – are similar, except that for 
these operations, it is necessary for the first operand to 
be in register A. 

 The code generation for <assign> consists of bringing the 
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value to be assigned into register A (using REGA) and 
then generating a STA instruction. Note that REGA is then 
set to null. 

 Fig 5.19(d) shows a symbolic representation of the object 
code generated for the assignment statement being 
translated. 

 Fig 5.20 shows the other code-generation routines for the 
grammar in Fig 5.2. The routine for <prog-name> 
generates header information in the object program that 
is similar to that created from the START and EXTREF 
assembler directives. 
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It also generates instructions to save the return address 
and jump to the first executable instruction in the 
compiled program. 
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The compiler also generates any Modification records 
required to describe external references to library 
subroutines. 

 For the complete code-generation process of the program 
in Fig 5.1, it is shown in Fig 5.21. 
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5.2 Machine-Dependent Compiler Features 

 The process of analyzing the syntax of programs written 
in high-level languages should be relatively 
machine-independent. The real machine dependencies of 
a compiler are related to the generation and optimization 
of the object code. 

 There are many complex issues involving the code 
generation such as the allocation of registers and the 
rearrangement of machine instructions to improve 
efficiency of execution. 
Such types of code optimization are normally done by 
considering an intermediate form of the program being 
compiled. 
In this intermediate form, the syntax and semantics of the 
source statements have been completely analyzed, but 
the actual translation into machine code has not yet been 
performed. 

 For the purposes of code optimization, the intermediate 
form of the program is much easier to analyze and 
manipulate than in either the source program or the 
machine code. 

5.2.1 Intermediate Form of the Program 
 There are many possible ways of representing a program 

(in Aho et al., 1988) in an intermediate form for code 
analysis and optimization. The intermediate form used is 
a sequence of quadruples below. 
operation,  op1, op2, result 
where operation is some function to be performed by the 
object code, op1 and op2 are the operands for this 
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operation, and result designates where the resulting value 
is to be placed. 

 Example 1: “SUM := SUM + VALUE“ could be 
represented with the quadruples 

+ ,  SUM, VALUE, i1 
:= ,  i1 ,   , SUM 

 Example 2: “VARIANCE := SUMSQ DIV 100 – MEAN * 
MEAN” could be represented with the quadruples 

DIV,  SUMSQ, #100 , i1 
* ,  MEAN , MEAN, i2 
﹣ ,  i1  , i2  , i3 
:= ,  i3  ,   , VARIANCE 

 The above quadruples would be created by intermediate 
code-generation routines similar to those discussed in 
Section 5.1.4. 

 Many types of analysis and manipulation can be 
performed on the quadruples for code-optimization 
purposes. 
For example, the quadruples can be rearranged to 
eliminate redundant load and store operations, and the 
intermediate results ij can be assigned to registers or to 
temporary variables to make their use as efficient as 
possible. 
After optimization has been performed, the modified 
quadruples are translated into machine code. 

 Fig 5.22 shows a sequence of quadruples corresponding 
to the source program in Fig 5.1. 
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5.2.2 Machine-Dependent Code Optimization 

 To perform machine-dependent code optimization, the 
first problem is the assignment and use of registers. 

 On many computers, there are a number of 
general-purpose registers that may be used to hold some 
useful data. 
Machine instructions that use registers as operands are 
usually faster than the corresponding instructions that 
refer to locations in memory. Therefore, we would prefer 
to keep in registers all variables and intermediate results 
that will be used later in the program. 
For example, consider the quadruples shown in Fig 5.22. 
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The variable VALUE is used once in quadruple 7 and 
twice in quadruple 9. If registers are enough and available, 
it would be possible to fetch this value only once. 

 Note that there are rarely as many registers available as 
we would like to use. The problem then becomes one of 
selecting which register value to replace when it is 
necessary to assign a register for some other purpose. 
One reason approach is to scan the program for the next 
point at which each register value would be used. The 
value that will not be needed for the longest time is the 
one that should be replaced. 

 In making and using register assignments, a compiler 
must also consider the control flow of the program. The 
existence of Jump instructions creates difficulty in 
keeping track of register contents. 
One way to deal with this problem is to divide the program 
into basic blocks.  
A basic block is a sequence of quadruples with one entry 
point, which is at the beginning of the block, one exit point, 
which at end of the block, and no jumps within the block. 

 Since procedure calls can have unpredictable effects on 
register contents, a CALL operation is also usually 
considered to begin a new basic block. 

 Fig 5.23 shows the division of the quadruples from Fig 
5.22 into basic blocks. This figure also shows a 
representation of the control flow of the program. This 
kind of representation is called a flow graph for the 
program. 
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 Another possibility for code optimization involves 

rearranging quadruples before machine code is 
generated. 
For example, the quadruples in Fig 5.24(a) are the same 
as quadruples 17-20 in Fig 5.22. It shows a typical 
generation of machine code from these quadruples, using 
only a single register (register A). 
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In Fig 5.24(a), since i2 has just been computed, its value 
is available in register A; however, this does no good, 
since the first operand for a ‘–‘ operation must be in the 
register. It is necessary to store the value of i2 in another 
temporary variable, T2, and then load the value of i1 from 
T1 into register A before performing the subtraction. 

 With a little analysis, an optimizing compiler could 
recognize this situation and rearrange the quadruples so 
the 2nd operand of the subtraction is computed first. This 
rearrangement is illustrated in Fig 5.24(b). 

 
The resulting machine code requires two fewer 
instructions and uses only one temporary variable instead 
of two. 

 Other possibilities for machine-dependent code 
optimization involve taking advantage of specific 
characteristics and instructions of target machine. 
For example, there may be special loop-control 
instructions or addressing modes that can be used to 
create more efficient object code. 
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