
System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Chapter 5 – Compilers

5.1 Basic Compiler Functions

 Fig 5.1 shows an example Pascal program for the
following explanations.

 For the purposes of compiler construction, a high-level

programming language is usually described in terms of
grammar.
This grammar specifies the form, or syntax, of legal
statements in the language.
The problem of compilation then becomes one of
matching statements written by the programmer to
structures defined by the grammar, and generating the

Written by WWF １

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２

appropriate object code for each statement.
 A source program statement can be regarded as a

sequence of tokens rather than simply as a string of
characters.
Tokens may be thought of as the fundamental building
blocks of the language. For example, a token might be a
keyword, a variable name, an integer, an arithmetic
operator, etc.

 The task of scanning the source statement, recognizing
and classifying the various tokens, is known as lexical
analysis. The part of the compiler that performs this
analytic function is commonly called the scanner.

 After the token scan, each statement in the program must
be recognized as some language construct, such as a
declaration or an assignment statement, described by the
grammar.
This process, called syntactic analysis or parsing, is
performed by a part of the compiler that is usually called
the parser.

 The last step in the basic translation process is the
generation of object code. Most compilers create
machine-language programs directly instead of producing
a symbolic program for later translation by an assembler.

 Although we have mentioned three steps in the
compilation process – scanning, parsing, and code
generation – it is important to realize that a compiler does
not necessarily make three passes over the program
being translated.
For some languages, it is quite possible to compile a
program in a single pass.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ３

5.1.1 Grammars
 A grammar for a programming language is a formal

description of the syntax, or form, of programs and
individual statements written in the language.

 The grammar does not describe the semantics, or
meaning, of the various statements; such knowledge
must be supplied in the code-generation routines.
Example: for the difference between syntax and
semantics, consider the two statements (I := J + K) and
(X := Y + I), where X and Y are REAL variables and I, J, K
are INTEGER variables.
These two statements have identical syntax. However,
the semantics of the two statements are quite different.
The first statement specifies that the variables in the
expression are to be added using integer arithmetic
operations. The second statement specifies a
floating-point addition, with the integer operand I being
converted to floating point before adding.

 Obviously, these two statements would be compiled into
very different sequences of machine instructions.
However, they would be described in the same way by
the grammar.
The differences between the statements would be
recognized during code generation.

 A number of different notations can be used for writing
grammars. The one we describe is called BNF (for
Backus-Naur Form). Fig 5.2 gives one possible BNF
grammar for a highly restricted subset of Pascal.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 A BNF grammar consists of a set of rules, each of which

defines the syntax of some construct in the programming
language.
For example, Rule 13 in Fig 5.2: <read> ::= READ
(<id-list>). This is a definition of the syntax of a Pascal
READ statement that is denoted in the grammar as
<read>.
The symbol ::= can be read “is defined to be”. On the left
of this symbol is the language construct being defined,
<read>, and on the right is a description of the syntax
being defined for it.

 Character strings enclosed between the angle brackets <
and > are called nonterminal symbols (such as ‘<read>’
and ‘<id-list>’). These are the names of constructs
defined in the grammar.
Entries not enclosed in angle brackets are terminal
symbols of the grammar (i.e., tokens, such as ‘READ’, ‘(‘,
and ‘)’).
The blank spaces in the grammar rules are not significant.

Written by WWF ４

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

They have been included only to improve readability.
 To recognize a <read> (to resolve all nonterminal

symbols), we also need the definition of <id-list>. This is
provided by Rule 6 in Fig 5.2. <id-list> ::= id |
<id-list>, id
This rule offers two possibilities, separated by the |
symbol, for the syntax of an <id-list>.
The first alternative specifies that an <id-list> may consist
simply of a token id (the notation id denotes an identifier
that is recognized by the scanner).
The second alternative is an <id-list>, followed by the
token “,” (comma), followed by a token id.
Example: ALPHA is an <id-list> that consists of a single
id ALPHA; ALPHA , BETA is an <id-list> that consists of
another <id-list> ALPHA, followed by a comma, followed
by an id BETA, and so forth.

 It is often convenient to display the analysis of a source
statement in terms of a grammar as a tree. This tree is
usually called the parse tree, or syntax tree, for the
statement. Fig 5.3(a) shows the parse tree for the
statement READ (VALUE).

Written by WWF ５

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 Rule 9 of the grammar in Fig 5.2 provides a definition of
the syntax of an assignment statement:
<assign> ::= id := <exp>
That is, an <assign> consists of an id, followed by the
token :=, followed by an expression <exp>.

 Rule 10 gives a definition of an <exp>:
<exp> ::= <term> | <exp> + <term> | <exp> - <term>

 Continuously, Rule 11 defines a <term> to be any
sequence of <factor>s connected by * and DIV.

 Again, Rule 12 specifies that a <factor> may consist of an
identifier id or an integer int (which is also recognized by
the scanner) or an <exp> enclosed in parentheses.

 Fig 5.3(b) shows the parse tree for statement 14 from Fig
5.1 in terms of the rules just described.

Written by WWF ６

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Note that the parse tree in Fig 5.3(b) implies that
multiplication and division are done before addition and
subtraction (that is, multiplication and division have higher
precedence than addition and subtraction). The terms
SUMSQ DIV 100 and MEAN * MEAN must be calculated
first since these intermediate results are the operands
(left and right subtrees) for the – operation.

 The parse trees shown in Fig 5.3 represent the only
possible ways to analyze these two statements in terms
of the grammar of Fig 5.2. If there is more than one
possible parse tree for a given statement, the grammar is
said to be ambiguous.

 Fig 5.4 shows the parse tree for the entire program in Fig
5.1.

Written by WWF ７

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

5.1.2 Lexical Analysis

 Lexical analysis involves scanning the program to be
compiled and recognizing the tokens that make up the
source statements. Scanners are usually designed to
recognize keywords, operators, and identifiers, as well as
integers, floating-point numbers, character strings, and
other similar items.

 Items such as identifiers and integers are usually
recognized directly as single tokens and might be defined
as a part of the grammar. For example,
<ident> ::= <letter> | <ident> <letter> | <ident> <digit>
<letter> ::= A | B | C | … | Z
<digit> ::= 0 | 1 | …| 9

 The output of the scanner consists of a sequence of
tokens. For efficiency of later use, each token is usually
represented by some fixed-length code, such as an
integer, rather than as a variable-length character string.

Written by WWF ８

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

In such a token coding scheme for the grammar of Fig 5.2
(shown in Fig 5.5), the token PROGRAM would be
represented by the integer value 1, an identifier id would
be represented by the value 22, and so on.

 When the token being scanned is a keyword or an

operator, such a coding scheme gives sufficient
information. However, in the case of identifier, it is also
necessary to specify the particular identifier name that
was scanned.
The same is true for integers, floating-point values,
character-string constants, etc.
This can be accomplished by associating a token
specifier with the type code for such tokens. The specifier
gives the identifier name, integer value, etc., that was
found by the scanner.

Written by WWF ９

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 Fig 5.6 shows the output from a scanner for the program
in Fig 5.1, using the token coding scheme in Fig 5.5.

For token type 22 (identifier), the token specifier is a
pointer to a symbol-table entry (denoted be ^SUM,
^SUMSQ, etc.).
For token type 23 (integer), the specifier is the value of
the integer (denoted by #0, #100, etc.).

 The scanner usually is responsible for reading the lines of
the source program as needed, and possibly for printing

Written by WWF １０

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF １１

the source listing. Comments are ignored by the scanner,
except for printing on the output listing.

 The process of lexical scanning is quite simple. However,
many languages have special characteristics that must be
considered when programming a scanner.
For example, in FORTRAN, a number in columns 1-5 of a
source statement should be interpreted as a statement
number, not as an integer.

 Languages that do not have reserved words create even
more difficulties for the scanner.
For example, in FORTRAN, any keyword may also be
used as an identifier (See the case in the lower part of
page 237).
In such a case, the scanner might interact with the parser
so that it could tell the proper interpretation of each word,
or it might simply place identifiers and keywords in the
same class, leaving the task of distinguishing between
them to the parser.

Modeling Scanners as Finite Automata
 The tokens of most programming languages can be

recognized by a finite automaton. Finite automata are
often represented graphically, as illustrated in Fig 5.7(a).
States are represented by circles, and transitions by
arrows from one state to another. Each arrow is labeled
with a character or a set of characters that cause the
specified transition to occur.

 Consider, for example, the finite automaton shown in Fig
5.7(a) and the first input string in Fig 5.7(b).

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

The automaton starts in State 1 and examines the first
character of the input string. The character α causes the
automaton to move from State 1 to State 2.
The b causes a transition from State 2 to State 3, etc.

 The first two input strings in Fig 5.7(b) can be recognized
by the finite automaton in Fig 5.7(a).
Consider the third input string in Fig 5.7(b). The finite
automaton beings in State 1, as before, and the α causes
a transition from State 1 to State 2.
Now the next character to be scanned is c. However,
there is no transition from State 2 that is labeled with c.
Therefore, the automaton must stop in State 2.

 Fig 5.8 shows several finite automata that are designed to
recognize typical programming language tokens.

Written by WWF １２

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Fig 5.8(a) recognizes identifiers and keywords that begin
with a letter and may continue with any sequence of
letters and digits.
Some languages allow identifiers such as NEXT_LINE,
which contains the underscore character (_). Fig 5.8(b)
shows a finite automaton that recognizes identifiers of this
type.

Written by WWF １３

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

The finite automaton in Fig 5.8(c) recognizes integers that
consist of a string of digits, including those that contain
leading zeroes, such as 000025.
Fig 5.8(d) shows an automaton that does not allow
leading zeroes, except in the case of the integer 0.

 Each of the finite automata we have seen so far was
designed to recognize one particular type of token. Fig
5.9 shows a finite automaton that can recognize all of the
tokens listed in Fig 5.5.

 In Fig 5.9, a special case occurs in State 3. Suppose that
the scanner encounters an erroneous token such as
“VAR.”.

When the automaton stops in State 3, the scanner should
perform a check to see whether the string being
recognized is “END.”.
If it is not, the scanner could back up to State 2
(recognizing the “VAR”). The period would then be

Written by WWF １４

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

rescanned as part of the following token the next time the
scanner is called.

 Finite automata provide an easy way to visualize the
operation of a scanner. Fig 5.10(a) shows a typical
algorithm to recognize such a token.
Fig 5.10(b) shows the finite automaton from Fig 5.8(b)
represented in a tabular form.

Written by WWF １５

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF １６

5.1.3 Syntactic Analysis
 During syntactic analysis, the source statements written

by the programmer are recognized as language
constructs described by the grammar being used.

 We may think of this process as building the parse tree for
the statements. Parsing techniques are divided into two
general classes – bottom-up and top-down – according to
the way in which the parse tree is constructed.
Top-down methods (ex. recursive-descent parsing) begin
with the rule of the grammar that specifies the goal of the
analysis (i.e., the root of the tree), and attempt to
construct the tree so that the terminal nodes match the
statements being analyzed.
Bottom-up methods (ex. operator-precedence parsing)
begin with the terminal nodes of the tree (the statements
being analyzed), and attempt to combine these into
successively higher-level nodes until the root is reached.

 A large number of different parsing techniques have been
devised, most of which are applicable only to grammars
that satisfy certain condition.

Operator-Precedence Parsing
 The bottom-up parsing technique we consider is called

the operator precedence method. This method is based
on examining pairs of consecutive operators in the source
program, and making decisions about which operation
should be performed first.
For example, the arithmetic expression “A + B * C – D”.
According to usual rules of arithmetic, * and / have higher
precedence than + and –. If we examine the first two
operators + and *, we find that + has lower precedence
than *. This is often written as “+ < *”.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF １７

Similarly, for the next part pair of operators * and –, we
would find that * has higher precedence than –. We may
write this as “* > –”.

 A + B * C – D

< >

This implies that the subexpression B*C is to be
computed before either of the other operations in the
expression is performed.

 The first step in constructing an operator-precedence
parser is to determine the precedence relations between
the operators of the grammar. In this context, operator is
taken to mean any terminal symbol (i.e., any token), so
we also have precedence relations involving tokens such
as BEGIN, READ, id, etc.
The matrix in Fig 5.11 shows these precedence relations
for the grammar in Fig 5.2.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 The relation ≐ indicates that the two tokens involved
have equal precedence and should be recognized by the
parser as part of the same language construct.

 Note that the precedence relations do not follow the
ordinary rules for comparisons.
For example, we have “; > END” but “END > ;”.
That is, when ; is followed by END, the ; has higher

precedence.
But when END is followed by ;, the END has higher

Written by WWF １８

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

precedence.
 Also note that in many cases, there is no precedence

relation between a pair of tokens. This means that these
two tokens cannot appear together in any legal statement.
If such a combination occurs during parsing, it should be
recognized as a syntax error.

 There are algorithmic methods for constructing a
precedence matrix like Fig 5.11 from a grammar [see, for
example, Aho et al. (1998)]. For the operator-precedence
parsing method to be applied, it is necessary that all the
precedence relations be unique.

 Fig 5.12 shows the application of the
operator-precedence parsing method to the READ
statement from line 9 of the program in Fig 5.1.

The statement is scanned from left to right, one token at a
time. For each pair of operators, the precedence relation
between them is determined.
Part (ii) of Fig 5.12 shows the statement being analyzed

Written by WWF １９

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２０

with id replaced by <N1>.

Part (ii) of Fig 5.12 also shows the precedence relations
that hold in the new version of the statement. An
operator-precedence parser generally uses a stack to
save tokens that have been scanned but yet parsed, so it
can reexamine them in this way.
Precedence relations hold only between terminal symbols,
so <N1> is not involved in this process, and a relationship
is determined between (and).

 Fig 5.13 shows a similar step-by-step parsing of the
assignment statement from line 14 of the program in Fig
5.1.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２１

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Note that the left-to-right scan is continued in each step
only far enough to determine the next portion of the
statement to be recognized, which is the first portion
delimited by < and >.
Once this portion has been determined, it is interpreted as
a nonterminal according to some rule of the grammar.

 This process continues until the complete statement is
recognized. Note that (see Fig 5.13) each portion of the
parse tree is constructed from the terminal nodes up
toward the root, hence the term bottom-up parsing.
Although we have illustrated operator-precedence

Written by WWF ２２

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２３

parsing only on single statements, the same techniques
can be applied to an entire program.

 Behind the operator precedence technique, a more
general method known as shift-reduce parsing was
developed.
Shift-reduce parsers make use of a stack to store tokens
that have not yet been recognized in terms of the
grammar.
The actions of the parser are controlled by entries in a
table, somewhat similar to the precedence matrix
discussed before.
The two main actions are shift (push the current token
onto the stack) and reduce (recognize symbols on top of
the stack according to a rule of the grammar).

 Fig 5.14 illustrates this shift-reduce process, using the
same READ statement considered in Fig 5.12. The token
currently being examined by the parser is indicated by
↑.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

In Fig 5.14(a), the parser shifts (pushing the currently
token onto the stack) when it encounters the token
BEGIN.

Written by WWF ２４

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２５

In Fig 5.14 (b-d), similar to the action in Fig 5.14(a).
In Fig 5.14(e), when parser examines the token), the
reduce action is invoked. A set of tokens from the top of
the stack (in this case, the single token id) is reduced to a
nonterminal symbol from the grammar (in this case,
<id-list>).
In Fig 5.14(f), the token) is considered again. This time, it
will be pushed onto the stack, to be reduced later as part
of the READ statement.

 For this simple type of grammar, shift roughly
corresponds to the action taken by an
operator-precedence parser when it encounters the
relations < and ≐. Reduce roughly corresponds to the
action taken when an operator-precedence parser
encounters the relation >.

Recursive-Descent Parsing
 The other parsing technique is a top-down method known

as recursive descent. A recursive descent parser is made
up of a procedure for each nonterminal symbol.

 As an example for illustrating the parsing process of a
recursive descent parser, consider Rule 13 of the
grammar in Fig 5.2.
The procedure for <read> in a recursive-decent parser
first examines the next two input tokens, looking for
READ and (.
If these are found, the procedure for <read> then calls the
procedure for <id-list>.
If that procedure (for <id-list>) succeeds, the <read>
procedure examines the next input token, looking for).
If all these tests are successful, the <read> procedure

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２６

returns an indication of success to its caller and advances
to the next token following).
Otherwise, the <read> procedure returns an indication of

failure.
 When there are several alternatives defined by the

grammar for a nonterminal, the procedure is only slightly
more complicated. For the recursive-descent technique, it
must be possible to decide which alternative to use by
examining the next input token.
For example, the procedure for <stmt> looks at the next
token to decide which of its four alternatives to try.
If the token is READ, it calls the procedure for <read>;
if the token is id, it calls the procedure for <assign>
because this is the only alternative that can begin with the
token id, and so on.

 There is a problem. For example, the procedure for
<id-list>, corresponding to Rule 6, would be unable to
decide between its two alternatives since id and <id-list>
can begin with id.
If the procedure decided to try the 2nd alternative (<id-list>,
id), it would immediately call itself recursively to find an
<id-list>. This could result in another immediate recursive
call, which leads to an unending chain.
The reason for this is that one of the alternatives for
<id-list> begins with <id-list>.
Therefore, top-down parsers cannot be directly used with
a grammar that contains this kind of immediate left
recursion.

 Fig 5.15 shows the grammar from Fig 5.2 with left
recursion eliminated.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 Top-down parsing using new grammar: Consider Rule 6a

in Fig 5.15.
This notation specifies that the terms between {and} may
be omitted, or repeated one or more times.
Thus, Rule 6a defines <id-list> as being composed of an
id followed by zero or more occurrences of “, id”.
This is clearly equivalent to Rule 6 of Fig 5.2.

 Fig 5.16 illustrates a recursive-descent parse of the
READ statement on line 9 of Fig 5.1, using the grammar
in Fig 5.15.

Written by WWF ２７

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２８

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２９

Fig 5.16(a) shows the procedures for the nonterminals
<read> and <id-list>.
Assume that the variable TOKEN contains the type of the
next input token, using the coding scheme shown in Fig
5.5.

 Fig 5.16(b) (corresponding to the algorithms in Fig 5.16(a))
gives a graphic representation of the recursive-descent
parsing process for the statement being analyzed.
In part (i), the READ procedure has been invoked and
has examined the tokens READ and (from the input
stream (indicated by the dashed lines).
In part (ii), READ has called IDLIST (indicated by the solid
line), which has examined the token id.
In part (iii), IDLIST has returned to READ, indicating
success; READ has then examined the input token).
This completes the analysis of the source statement. The
procedure READ will now return to its caller, indicating
that a <read> was successfully found.

 Fig 5.17 illustrates a recursive-descent parse of the
assignment statement on line 14 of Fig 5.1.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ３０

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ３１

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Fig 5.17(a) shows the procedures (ASSIGN, EXP, TERM,
FACTOR) for the nonterminal symbols that are involved in
parsing this statement. You should carefully compare
these procedures to the corresponding rules of the
grammar.
Fig 5.17(b) is a step-by-step representation of the
procedure calls and token examinations similar to that
shown in Fig 5.16(b).

Written by WWF ３２

 Note that the same technique can be applied to an entire
program.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ３３

5.1.4 Code Generation
 The code-generation technique we describe involves a

set of routines, one for each rule or alternative rule in the
grammar. When the parser recognizes a portion of the
source program according to the some rule of the
grammar, the corresponding routine is executed. Such
routines are often called semantic routines.

 Note that code-generation techniques need not be
associated with any particular parsing method.

 Assume that our code-generation routines make use of
two data structures for working storage: a list and a stack.
Items inserted into the list are removed in the order of
their insertion, first-in-first-out.
Items pushed onto the stack are removed (popped from
the stack) in the opposite order, last-in-first-out.
In addition, LISTCOUNT is used to keep a count of the
number of items currently in the list.
The code-generation routines also make use of the token
specifiers; these specifiers are denoted by S(token). For a
token id, S(id) is the name of the identifier, or a pointer to
the symbol-table entry for it.

 Fig 5.18 illustrates the application of our code-generation
process to the READ statement of line 9 of the program in
Fig 5.1. The parse tree for this statement is repeated for
convenience in Fig 5.18(a).

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Fig 5.18(c) shows a symbolic representation of the object
code to be generated for the READ statement. This code
consists of a call to a subroutine XREAD, which would be
part of a standard library associated with the compiler.

Written by WWF ３４

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ３５

Since XREAD may be used to perform any READ
operation, it must be passed parameters that specify the
details of the READ. In this case, the parameter list for
XREAD is defined immediately after the JSUB that call it.
Thus, the 2nd line in Fig 5.18(c) specifies that one variable
is to be read (WORD 1), and the 3rd line gives the
address of this variable.

 Fig 5.18(b) shows a set of routines that might be used to
accomplish this code generation.
The first two routines correspond to alternative structures
for <id-list>, which are shown in Rule 6 of the grammar in
Fig 5.2.
In either case, the token specifier S(id) for a new identifier
being added to the <id-list> is inserted into the list used by
the code-generation routines, and LISTCOUNT is
updated to reflect this insertion.
After the entire <id-list> has been parsed, the list contains
the token specifiers for all the identifiers that are part of
the <id-list>.
When the <read> statement is recognized, these token
specifiers are removed from the list and used to generate
the object code for the READ. (See code generation
routine <read> in Fig 5.18(b) in page 262.)

 Remember that, in generating the tree shown in Fig
5.18(a), recognizes first <id-list> and then <read>. At
each step, the parser calls the appropriate
code-generation routine.

 Fig 5.19 shows the code-generation process for the
assignment statement on line 14 of Fig 5.1.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ３６

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ３７

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Fig 5.19(a) displays the parse tree for this statement.
Most of the work of parsing involves the analysis of the
<exp> on the right-hand side of the :=.

Written by WWF ３８

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ３９

The parser first recognizes the id SUMSQ as a <factor>
and a <term>.
Then it recognizes the int 100 as a <factor>.
Then it recognizes SUMSQ DIV 100 as a <term>, and so

forth.
Note that the order of parsing the statement is the same
as the order of arithmetic evaluation.

 As each portion of the statement is recognized, a
code-generation routine is called to create the
corresponds object code. For example, suppose we want
generate code that corresponds to the rule <term>1 ::=
<term>2 * <factor>.

Our code-generation routines perform all arithmetic
operations using register A, so we clearly need to
generate a MUL instruction in the object code.
The result of this multiplication, <term>1, will be left in
register A by the MUL.
If either <term>2 or <factor> is already present in register
A, perhaps as the result of a previous computation, the
MUL instruction is all we need.
Otherwise, we must generate a LDA instruction preceding
the MUL. In this case, the previous value in register A
must be saved (store somewhere) if it will be required for
later use.

 Obviously, we need to keep track of the result left in
register A by each segment of code that is generated.
In the example just discussed, the node specifier
S(<term>1) would be set to rA, indicating that the result of
this computation is in register A.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ４０

The variable REGA is used to indicate the highest-level
node of the parse tree whose value is left in register A by
the code generated so far (i.e., the node whose specifier
is rA)

 As an illustration of these ideas, consider again the code-
generation routine in Fig 5.19(b) that corresponds to the
rule
<term>1 ::= <term>2 * <factor>

If the node specifier for either operand is rA, the
corresponding value is already in register A, so the
routine simply generates a MUL instruction. The operand
address for this MUL is given by the node specifier for the
other operand (the one not in the register).
Otherwise, the procedure GETA (shown in Fig 5.19(c)) is
called. This procedure generates a LDA instruction to
load the value associated with <term>2 into register A.

However, before the LDA, the procedure generates a STA
instruction to save the value currently in register A.
After the necessary instructions are generated, the code-
generation routine sets S(<term>1) and REGA to indicate
that the value corresponding to <term>1 is now in register
A. This completes the code-generation actions for the *
operation.

 The code-generation routine that corresponding to the “+”
operation is almost identical to the one just discussed for
*.
The routines for DIV and – are similar, except that for
these operations, it is necessary for the first operand to
be in register A.

 The code generation for <assign> consists of bringing the

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ４１

value to be assigned into register A (using REGA) and
then generating a STA instruction. Note that REGA is then
set to null.

 Fig 5.19(d) shows a symbolic representation of the object
code generated for the assignment statement being
translated.

 Fig 5.20 shows the other code-generation routines for the
grammar in Fig 5.2. The routine for <prog-name>
generates header information in the object program that
is similar to that created from the START and EXTREF
assembler directives.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ４２

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

It also generates instructions to save the return address
and jump to the first executable instruction in the
compiled program.

Written by WWF ４３

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

The compiler also generates any Modification records
required to describe external references to library
subroutines.

 For the complete code-generation process of the program
in Fig 5.1, it is shown in Fig 5.21.

Written by WWF ４４

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ４５

5.2 Machine-Dependent Compiler Features

 The process of analyzing the syntax of programs written
in high-level languages should be relatively
machine-independent. The real machine dependencies of
a compiler are related to the generation and optimization
of the object code.

 There are many complex issues involving the code
generation such as the allocation of registers and the
rearrangement of machine instructions to improve
efficiency of execution.
Such types of code optimization are normally done by
considering an intermediate form of the program being
compiled.
In this intermediate form, the syntax and semantics of the
source statements have been completely analyzed, but
the actual translation into machine code has not yet been
performed.

 For the purposes of code optimization, the intermediate
form of the program is much easier to analyze and
manipulate than in either the source program or the
machine code.

5.2.1 Intermediate Form of the Program
 There are many possible ways of representing a program

(in Aho et al., 1988) in an intermediate form for code
analysis and optimization. The intermediate form used is
a sequence of quadruples below.
operation, op1, op2, result
where operation is some function to be performed by the
object code, op1 and op2 are the operands for this

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ４６

operation, and result designates where the resulting value
is to be placed.

 Example 1: “SUM := SUM + VALUE“ could be
represented with the quadruples

+ , SUM, VALUE, i1
:= , i1 , , SUM

 Example 2: “VARIANCE := SUMSQ DIV 100 – MEAN *
MEAN” could be represented with the quadruples

DIV, SUMSQ, #100 , i1
* , MEAN , MEAN, i2
﹣ , i1 , i2 , i3
:= , i3 , , VARIANCE

 The above quadruples would be created by intermediate
code-generation routines similar to those discussed in
Section 5.1.4.

 Many types of analysis and manipulation can be
performed on the quadruples for code-optimization
purposes.
For example, the quadruples can be rearranged to
eliminate redundant load and store operations, and the
intermediate results ij can be assigned to registers or to
temporary variables to make their use as efficient as
possible.
After optimization has been performed, the modified
quadruples are translated into machine code.

 Fig 5.22 shows a sequence of quadruples corresponding
to the source program in Fig 5.1.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

5.2.2 Machine-Dependent Code Optimization

 To perform machine-dependent code optimization, the
first problem is the assignment and use of registers.

 On many computers, there are a number of
general-purpose registers that may be used to hold some
useful data.
Machine instructions that use registers as operands are
usually faster than the corresponding instructions that
refer to locations in memory. Therefore, we would prefer
to keep in registers all variables and intermediate results
that will be used later in the program.
For example, consider the quadruples shown in Fig 5.22.

Written by WWF ４７

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ４８

The variable VALUE is used once in quadruple 7 and
twice in quadruple 9. If registers are enough and available,
it would be possible to fetch this value only once.

 Note that there are rarely as many registers available as
we would like to use. The problem then becomes one of
selecting which register value to replace when it is
necessary to assign a register for some other purpose.
One reason approach is to scan the program for the next
point at which each register value would be used. The
value that will not be needed for the longest time is the
one that should be replaced.

 In making and using register assignments, a compiler
must also consider the control flow of the program. The
existence of Jump instructions creates difficulty in
keeping track of register contents.
One way to deal with this problem is to divide the program
into basic blocks.
A basic block is a sequence of quadruples with one entry
point, which is at the beginning of the block, one exit point,
which at end of the block, and no jumps within the block.

 Since procedure calls can have unpredictable effects on
register contents, a CALL operation is also usually
considered to begin a new basic block.

 Fig 5.23 shows the division of the quadruples from Fig
5.22 into basic blocks. This figure also shows a
representation of the control flow of the program. This
kind of representation is called a flow graph for the
program.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 Another possibility for code optimization involves

rearranging quadruples before machine code is
generated.
For example, the quadruples in Fig 5.24(a) are the same
as quadruples 17-20 in Fig 5.22. It shows a typical
generation of machine code from these quadruples, using
only a single register (register A).

Written by WWF ４９

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

In Fig 5.24(a), since i2 has just been computed, its value
is available in register A; however, this does no good,
since the first operand for a ‘–‘ operation must be in the
register. It is necessary to store the value of i2 in another
temporary variable, T2, and then load the value of i1 from
T1 into register A before performing the subtraction.

 With a little analysis, an optimizing compiler could
recognize this situation and rearrange the quadruples so
the 2nd operand of the subtraction is computed first. This
rearrangement is illustrated in Fig 5.24(b).

The resulting machine code requires two fewer
instructions and uses only one temporary variable instead
of two.

 Other possibilities for machine-dependent code
optimization involve taking advantage of specific
characteristics and instructions of target machine.
For example, there may be special loop-control
instructions or addressing modes that can be used to
create more efficient object code.

Written by WWF ５０

	Chapter 5 – Compilers
	5.1 Basic Compiler Functions
	5.1.1 Grammars
	5.1.2 Lexical Analysis
	Modeling Scanners as Finite Automata
	5.1.3 Syntactic Analysis
	Operator-Precedence Parsing
	Recursive-Descent Parsing
	5.1.4 Code Generation
	5.2 Machine-Dependent Compiler Features
	5.2.1 Intermediate Form of the Program
	5.2.2 Machine-Dependent Code Optimization

