System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

Chapter 3 — Loaders and Linkers

® Three fundamental processes:

Loading — brings the object program into memory for
execution.

Relocation — modifies the object program so that it can be
loaded at an address different from the location originally
specified.

Linking — combines two or more separate object
programs and supplies the information needed to allow
references between them.

® A loader is a system program that performs the loading
function. Many loaders also support relocation and linking.
Some systems have a linker to perform the linking
operations and a separate loader to handle relocation and
loading.

3.1 Introduction

® The most fundamental functions of a loader — bringing an
object program into memory and starting its execution.

3.1.1 Design of an Absolute Loader

® An example object program is shown in Fig 3.1(a).

!H:.’I:r?f £0100C00L07A

01 uu%iy §10 3:#52#115,9_::1&3@3a1ﬂiq@mu15‘,§aznaiﬂs_:__1nnzhonj.uzq9u1ua B0C162D
'j;._ﬂﬂJIJIJIAI .'i-:_tcrms 646208 walpaaﬁicﬂquy S'dnmunuuu{uuuuun. __ |
100203591 E04103000103080205030203F0820 sqﬂzalnaqﬂ!qm 575490392 CL0STIBICIF
10 02052161010364000007100] uﬂ'q.pn 1030E02079302064509 niq‘pc: 0793C1036
TO02073P7I820644C000005

01000 P
(8] Object progran

Written by WWF 1

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

® For a simple absolute loader, all functions are
accomplished in a single pass as follows:

1) The Header record of object programs is checked to
verify that the correct program has been presented for
loading.

2) As each Text record is read, the object code it contains
Is moved to the indicated address in memory.

3) When the End record is encountered, the loader jumps
to the specified address to begin execution of the
loaded program.

® Fig 3.1(b) shows a representation of the program from Fig
3.1(a) after loading.

Memory
address Contents

0000 ZXXXXTXL AKAXXAXX AZXXTZXEX XEAXXILX
0c1n EXAENAXNET NEMEXXEX AXRXEXXIXE XXAXXTKX

DEFD AEXAEX EEEARETEXR . AEAAMKAK
10G0 .l.z'l'ﬂﬂl-i-ﬂ 20390010 3ﬁlﬂlﬂﬂlg 30101548
lnlo F0813Ci0. 03001024 OCL103900 102DOCLD
1020 6482081 OBICAAC QO0D454F L&000003
1030 [000000RN wxexxxx¥ xxxxxxax axxxxzxax[*—COPY

- w » o -
- - - - .
] -] L L

2030 Ixzxaxxayx xxxxxxxx -xx0&}030 GO10J0EQ
2040 20503020 3IFDEI0ID 28103030 20573490
2050 |3%92CI0FE. 38203FI0 103564C00 OOFLODLIO
2060 00043030 EQ207530 20845090 34DC2O7%
2070 (20103638 2064400 000Shexxx xuamxmxxx

208G EENEELEE HAXNYAXNENE XNEXAXEE RAXNEEXX

L} & - L]]
» & |} L] »
n - ' L]]

(b} Program loaded in memory

® Fig 3.2 shows an algorithm for the absolute loader we
have discussed.

Written by WWF 2

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

begin
read Header record
verify program name and length
read Eirst Text record
while record type # 'E’ do
beagin
{if cbject code is in character form, convert inta
internal representation}
move chiect code to specified location in memory
read next okject program record
and
jurmp to address specified in End record
and

Figure 3.2 Algorithm for an absolute loader.

® |t is very important to realize that in Fig 3.1(a), each
printed character represents one byte of the object
program record. In Fig 3.1(b), on the other hand, each
printed character represents one hexadecimal diqgit in

memory (a half-byte).

® Therefore, to save space and execution time of loaders,
most machines store object programs in a binary form,
with each byte of object code stored as a single byte in
the object program.

3.1.2 A Simple Bootstrap Loader

® \When a computer is first turned on or restarted, a special
type of absolute loader, called a bootstrap loader, is
executed. This bootstrap loads the first program to be run
by the computer — usually an operating system.

® Fig 3.3 shows the source code for our bootstrap loader.
The bootstrap itself begins at address O in the memory.

Written by WWF 3

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

BCOT START 0 BOCTSTRAP LOANER FOR SIC/XE

. THIS BOOTSTRAP READS CBJECT CODE FRCOM DEVICE F1 AND ENTERS IT
. INTO MEMORY STARTING AT ADDRESS B0 (HEXADECIMAL). AFTER ALL OF
. THE CODE FROM DEVFL HAS BEEN SEEN ENTERED INTO MEMORY, THE

. BOOTSTRAP EXECUTES A JIMP TC ADDRESS 80 TC BEGIN EXECUTION OF
. THE PRCGRAM JUST LOADED, REGISTER X CONTAINS THE NEXT ADDORESS

. TO BE LOADED.
CLEAR A CLEAR REGISTER A TC ZERD
LOX W1lz8 INITIALIZE REGISTER X TO EEX BC

LOCP JEUR GETC READ HEX DIGIT FRCM PROGRAM BEING LUADED
RMD A5 WVE IN REGISTER S
SHIFTL 5.4 MOVE TO HIGH-ORDER 4 BITS COF BYTE
JSUB GETC GET NENT HEX DIGIT
ADDE E.A COMBINE DIGITS TO FORM ONE EYTE
STCH 0.X STORE AT ADDRESS IN REGISTER X
TIXR XX ADD 1 TO MEMCRY ACDRESS BEING LCACED
J LOOP LOoOP UNTIL END OF INPUT IS EEACHED

. SUBROUTINE TO READ ONE CHARACTER FROM INPFUT DEVICE AND

. COMVERT IT FROM ASCII CODE TO HEXADECTMAL DIGIT VALUE. THE
, COMVERTED DIGIT VALUE IS RETURNED IN REGISTER A. WHEN AN

. END-OF-FILE IS READ, CONTROL IS TRANSFERRED TO THE STARTING
. ADDEESS (HEX 80).

GETC ™D INFUT TEST INFUT DEVICE

JEQ GETC LOOZ UNTIL READY
RD INFUT READ CHARACTER
COMP #d IF CHARACTER IS HEX 04 (EMD OF FILE),
JEQ 80 JUMP TO START OF PROGRAM JUST LOAZED
ooMP #48 COMPARE TO HEX 30 (CHARACTER '0'}
JLT GETC SZTP CHARACTERS LESS THAN "0
SUB #iE SUBTRACT HEX 3C FROM ASCII CODE
QOMF k10 IF FESULT IS LESS THAN 10, CONVERSION IS
JLT RETURN COMPLETE. OTHERMISE, SUBTRACT 7 MORE
sUB L (FOR HEX DIGITS "A’' THROUGH 'F’)
REETURN RSUE RETURN TO CALLER
INPUT EYTE X'rl’ CODE FOR INFUT DEVICE
= LOCP

Figure 3.3 Bootstrap loader for SIC/XE.

Note: each byte of object code to be loaded is
represented on device F1 as two hexadecimal digits just
as it is in a Text record of a SIC object program.

1) The object code from device F1 is always loaded into
consecutive bytes of memory, starting at address 80. The

Written by WWF 4

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

main loop of the bootstrap keeps the address of the next
memory location to be loaded in register X.

2) After all of the object code from device F1 has been
loaded, the bootstrap jumps to address 80, which begins
the execution of the program that was loaded.

® Much of the work of the bootstrap loader is performed by
the subroutine GETC.

GETC is used to read and convert a pair of characters
from device F1 representing 1 byte of object code to be
loaded. For example, two bytes =C“D8"->'4438'H
converting to one byte ‘D8’'H.

The resulting byte is stored at the address currently in
register X, using STCH instruction that refers to location O
using indexed addressing.

The TIXR instruction is then used to add 1 to the value in
X.

3.2 Machine-Dependent Loader Features
® The absolute loader has several potential disadvantages.

One of the most obvious is the need for the programmer
to specify the actual address at which it will be loaded into

memory.

Writing absolute programs also makes it difficult to use
subroutine libraries efficiently. This could not be done
effectively if all of the subroutines had pre-assigned
absolute addresses.

® The need for program relocation is an indirect
consequence of the change to larger and more powerful
computers. The way relocation is implemented in a loader

Is also dependent upon machine characteristics.
Written by WWF 5

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

3.2.1 Relocation

® Two methods for specifying relocation as part of the
object program.

® The first method: A Modification record (The format is
given in Section 2.3.5.) is used to describe each part of
the object code that must be changed when the program
is relocated.

® Fig 3.4 shows a SIC/XE program we use to illustrate this
first method of specifying relocation.

Written by WWF 6

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

Line Lo
R Lo09
10 Qo0
12 opn3a
13
15 o0&
20 COoDA
a5 co0D
| ao10
35 ao13
40 ao17
45 oo1a
RO 0olD
5o 0020
Ao D023
GE DoZ6
70 DO2En
a0 QCED
a5 Oc30
100 Qo33
108 00386
110
115
120
125 1036
13D 1038
132 103a
133 103C
135 1044
140 1043
145 1046
150 1049
155 1048
1lai 104E
165 1G51
170 1053
175 14256
180 1059
1=% 105C
1g%
206
205
210 105D
212 108F
215 1062
2240 1065
225 1268
230 106B
235 106E
240 1070
2a5 1073
250 1076
2585

SUBRDUTINE TC EEAD RECORD INTC BUFFER

SUBROUTINE TO WRITE FEOCRD FROM BUFFER

Source statement
COPY START D
FIRST 2TL RETADFE

LDE $LEXFSTH
BASE LETH
CLOOP +JS1UE BDEEC
LIS LEMNGTH
i i i) #0
JEQ EMDFIL
+JSLUB WIREFE
J CLOCP
ENDFIL L& ECF
oTh BUFFER
LOxA, #3
ETA LESTH
=-JSIB HWEE=C
) ARETATR
EIF EYTE P
RETADR RESIH 1
LENITH RESY 1
EUFFER FPESE 4095
ROBEC CLEAR x
CLEAR Y
CLERR 5
+LIDT #4096
BRTOOP g INPUT
JEQ RLOOP
RO INFUT
LCOMER A,S
JEQ EIT
STCH BUFFER ., X
TTHR T
JLT FLOQF
EXTIT STK LEMISTH
RE0B
INETT BYTE H'Fl*
YEEEDC CLEAR =
ioT LENGTH
WLOOR TO COTPUT
JED WLOOP
LICH BUFFER, X
WD CUTRUT
TIHF T
JLT WLOCP
RSB
CRrrET BYTE X'gse
BN FIRST

Object code

17T202D
69202D

4P101036
DI2C2E6
290000
332007
4B10105D
3FZFEC
Q32010
OF2Z01E
010003
OF20a0
4B10105D
AE2003
454F46

B410
B400O
B440
15101000
E32019
332FFA
DE2013
A004
332008
S7C003
BESD
3BZFEA
134000
4F0000
FL

B4lC
774000
E32011
1322FFA
530003
DF2008
BESD
JB2FEF
SFO0CO
05

Figure 3.4 Example of a SIC/XE program (from Fig. 2.6).

Written by WWF

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

Most of the instructions in this program use relative or
immediate addressing.

The only portions of the assembled program that contain
actual addresses are the extended format instructions on
lines 15, 35, and 65. Thus these are the only items whose
values are affected by relocation.

® Fig 3.5 displays the object program corresponding to the
source in Fig 3.4.

HCOPY Eﬂﬂﬂﬁﬂ_lilﬂlﬂ”
‘l_.ﬁﬂl.'lﬂlll‘.-"‘l Ill 1202065204 qﬁi!lﬂlﬂlﬁﬁﬂllﬂlﬁfiﬂﬂﬂq‘] IIEDLI'_FI-:I lﬂ]ﬂ,'il!,‘.'"l FECO32CI0
lhﬂl:ll:lﬂl Dhl E’.FI F201601000 Jﬁurzuuuﬁummsq@u ﬂl:l,'l_'lih Fab

0010381 Q.'Iilﬂﬁliﬂq,.lii 0731 I:I.'lﬂl.‘.lqlE!IDl!‘.}?n! FFADB201 3A0043320 I.'.IBI,.HI:GIIJJ‘IE-SH
{ﬂﬁlﬂilﬂl I.'LJIIFB.&J liﬂﬂﬂfrﬂﬂﬂﬂq? L_B,ilfll,‘??iﬂﬂq!'ﬂﬂl 1332 r!.lll?il:ﬂﬂ]aﬂl'ﬂﬂﬂq‘lﬂlﬂ
Tﬁﬂﬂlﬂl?ﬂhﬂ?'ﬁl] IIFH‘# !‘ﬂ'ﬂﬂﬂﬂﬂj
KODOOD703+COPY
HP“EDI#AD!-I-CUPT

P%,FUDIJHI’HEI 3+COPY

Ihl:l'ﬂ'ﬂﬂﬂﬂ

Figure 3.5 Object program with relocation by Modification records.

Each Madification record specifies the starting address
and length of the field whose value is to be altered.

It then describes the modification to be performed.

In this example, all modifications add the value of the
symbol COPY, which represents the starting address of
the program.

® The Modification record is not well suited for use with all
machine architectures. Consider, for example, the
program in Fig 3.6. This is a relocatable program written
for standard version for SIC.

Written by WWF 8

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

Line Loc Source statemient Object code
g aonn COEY START 0
19 Q000 FIRST -y RETADR 140033
15 Q003 CLCOP JSIH ROREC 481038
20 o006 Lod LEMETH COo03E
25 oooe COME ZERD 280030
a0 Qoo JEQ ENDFIL 300018
is oogr JSUB WRREC 81061
40 o012 I TLOCP 300003
45 QLS EMDFIL oA =20F 0onoz2a
50 gcla STA BUFFER 0co0ag
55 cole Ins THREE poocz2n
& a01E STA LENGETH DeDOE
&5 go21 JEUB WREEC 481061
70 0a24 LI, RETADR 280033
75 nozy REUE 4C0000
gD no2a EOF EYTE C'EOF 454Fd5
g5 oo2m THEEE WOED 3 03003
o0 opso ZERD WORD 2 Qonoonn
85 0033 RETADR RESW 1
1093 fali k1 IESTH BESW 1
105 Q03s BUFFEER FESH 4095
110 ;
115 . SUBRCUTINE ‘TO READ RECORD INTO BUFFER
120 F3
125 1033 ROREC DX ZERC 040030
130 103c LDa ZERO 0003
135 10ag RLOOP b 19! TNEUT E0105D
140 1042 JED FIOGE 30103F
145 1c45 FD INEOT DE10SD
150 1048 ORE ZEFRD 280030
155 1048 JEQ EOT aplos7
160 104E STCH EBUFFER, X 548039
165 1051 TIX MAKLEM 2C105E
170 1054 JLT RLOOF 38103F
i7 1857 Ear STX LENGTH 100038
180 105A RSB 420000
185 105D NPT BYTE X'Fl* F1
150 1058 MAXLEN NORD 4056 001000
185 .
200 5 SUBRROGUTINE T WRITE REQORD FRON BUFFER
205 §
210 1081 WREEC Lo ZERC BanG30
215 1054 WLOCE T OUTELIT ED1073
220 1087 JEQ LOOE 301064
225 106& LICH BUFFER., X 508039
230 106D v CRITEUT DCio7e
235 1070 TIX LENGTH 2C0038
240 1073 LT LOOP 381064
245 1076 R3B 40000
250 1079 oUTPoT HYTE xosr 05
255 b in FIRST

Figurs 3.8 Relocatable program for a standard SIC machine.

The important difference between this example and the
one in Fig 3.4 is that the standard SIC machine does not
use relative addressing.

In this program the addresses in all the instructions
except RSUB must modified when the program is

Written by WWF 9

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

relocated. This would require 31 Maodification records,
which results in an object program more than twice as
large as the one in Fig 3.5.

® The second method: Fig 3.7 shows this method applied to
our SIC program example.

HEOPY £O000OPOI0TA
TODC00CIEFFC]400334810390000362800303000154810613C0003000024DC003900002D
TO000LE]ISEO00CO0364B10610800334C0000454F46000003000000

70010351 RFFCO40030000030E01050301037D8105028003G301037,5480392C105EIB103F
10010370A800,1000364C0D0QF 1001000

Tﬂﬂﬂlﬂﬁ Ill EIII_J'O#UQSQ,FU] 07 I,?D lﬂﬁﬁ.}ﬂlﬂ]%ﬂﬂlﬂ ?gniﬂﬂnil}?l 10 E'ﬁﬁi coocan 3
E0CDOOO

Figure 3.7 Object program with relocation by bit mask,
There are no Modification records.

The Text records are the same as before except that
there is a relocation bit associated with each word of
object code.

Since all SIC instructions occupy one word, this means
that there is one relocation bit for each possible
instruction.

® The relocation bits are gathered together into a bit mask
following the length indicator in each Text record. In Fig
3.7 this mask is represented (in character form) as three
hexadecimal digits.

® |f the relocation bit corresponding to a word of object code
IS set to 1, the program’s starting address is to be added
to this word when the program is relocated.

A bit value of 0 indicates that no modification is
necessary.

If a Text record contains fewer than 12 words of object
code, the bits corresponding to unused words are set to
0.

Written by WWF 10

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

For example, the bit mask FFC (representing the bit string
111111111100) in the first Text record specifies that all 10
words of object code are to be modified during relocation.

® Example: note that the LDX instruction on line 210 (Fig
3.6) begins a new Text record. If it were placed in the
preceding Text record, it would not be properly aligned to
correspond to a relocation bit because of the 1-byte data
value generated from line 185.

3.2.2 Program Linking

® Consider the three (separately assembled) programs in
Fig 3.8, each of which consists of a single control section.
Loe Source statement Object code

o000 PROGA START 0
EXTDEF LISTA, EMDIA
EXTREF LISTE.ENDB,LISTC,ENDC

0020 REF1 LDA LISTA 03z01D

o023 REF2 ALDT LISTR+4 77100004

goz7 REF3 L H#ENDA-LISTA 050014

0040 LISTA BEQU -

o054 ENDA BOU -

DOS54 REF4d WORD ENDA-LISTA+LISTC ocoo14

oasvy REFS WORD ENDC-LISTC-10 FFEFFS

0OSA REFE& WORD ENDC-LISTC+LISTA-1 0o003F

005D REF7 WORD ENDA-LISTA—- (ENDB-LISTB) goools

0080 REFS WORD LISTEB-LISTA FFF=CO
END REFL

Loec Source statement Object code

oooo PROGE SETART ©

EXTDEF LISTB,BRIB
EXTREF LISTA, ENDA, LISTC, ENDC

o036 nEFl +LIA LISTA 03100000
ODD3A REF2 LoDT LISTE+4 FTF2027
opam REF3 =~LIDX #ENDA-LISTA as10c000
Q060 LISTE BT "

0070 ENTB BOU -

0070 REF4 WORD EMDA-LISTA+LISTC 0000C0
o073 REFS WORD ENDC-LISTC=10 FFFFF&
0OT7TE REFG WORD BENDC-LISTC+LISTA~1 FFFFFTY
Qo79 REF7 WORD ENDA-LISTA- (ENTE-LISTHB) FFFFF0

L [ohrs o REFE WORD LISTB-LISTA go00s0

BND

Written by WWF 11

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

Loc Source statement Object code
Ll ulale] FROGC START o

EXTDEF LISTC,EMDC

EXTREF LISTA, FNDE, LTSTE. ENDB
Q018 REF1 +LIA ILISTA Q3100000
golc REF2 +~LIT LISTE+4 TT1O00004
obzo REF3 +LIoL H#EMNDE-LTISTA CS1LOD0000
0o30 LISTC ECKT b
0042 ENDC BOUT b
o042 REF4 ™WORD FNCA-T.TSTA+LISTC oo0o030
oo4=s BEFS WCRD ENDC-LISTC-1.0 oooona
po4s REFS WORD EMNDC-LISTCHLISTA-L [elafale il
D048 REF7 wWORD ENDA-LISTA—- (ENOB-LISTE} ooQoan
DO4AE REFS WOBRD LISTE-LISTA CoODOOn

- END

Figure 3.8 Sample programs illustrating linking and relocation.

® Consider first the reference marked REF1.

For the first program (PROGA), (1) REF1 is simply a
reference _to a label within the program. (2) It is
assembled in the usual way as a PC relative instruction.
(3) No modification for relocation or linking is necessary.

In PROGB, the same operand refers to an external
symbol. (1) The assembler uses an extended-format
instruction with address field set to 00000. (2) The object
program for PROGB (Fig 3.9) contains a Modification
record instructing the loader to_add the value of the
symbol LISTA to this address field when the program is
linked.

ROGA PODOOODOCO6S
ISTA PODGAGENDA ,DOO054
,LISTS ENOE LISTC ,[EMDC

TO0CG0200A03201L D77 10000405001 4

D005 UOOLAFFFFFE0000IR00001AFFFFCO
0002 Llurép P ~ *
DOOSADE+LIBTC

o

ooos +ENDC
0005 ID6-LIETC
DoCs +ENDC
DOGCs ~LIETC
DOOS +*FROGA
0Oas ENDB
OGS +LISTH
pOaE LISTR
MO0 060D 6-PROGA
EpQ00z

Written by WWF 12

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

ROGE 000000000 F
ISTHE 000 GOENDEB C0OoT0
ML ISTA MDA L LISTC EDC
-
-

TO000I6OB03 LOCO00T T 202 LOS 100000
-

k.~ oﬂn?&pmpnuno FFFFF&EF FFFFEFFFFFQOOOO60
Ccoo3Fo 4-1.131-:!". : i

€%ﬁi

NoD>X S+ EMNDA
Qoo3 ~LISTA
OooTF HENDA
ODOFOAOERE—LISTA
0o oo T LIS TC
oo T A ENDC
Qo7 ~LLILSETC
QoOoO7T +EMNDC
O OF ~LISTC

00 OF HLISTA
00O T D o I B
CO0F 06~ LLSTA
cooF #+F ROGH

booor ~LESTA

ROGC OO0000QO00o0aS 1
1sTC HOCCIGENDC OO0O& 2
RLISTA ENDA ALSTE ENDBE

-
TO000 LEB0COS L 000G T T 50000 &S I 0D oo
-

COoL2O0FOOCOIIQOO000R_00001L LOOCOOOQCOOOaDO
D001 90 54+L.0T5TM

ool DS+ LISTE

DDOZ O S ENDA

Lofla Tn B —LISTA
(= R 3 +ENDA
(= T —LISTA

00 D& 200 & FPROGC
OO G B0 G L LS TA
==l +ENDMA
DO Os ~LISTaA
MU D0 DA BD 6, — BN DB
MO 0004 BOB - LISTE
00O & 4ALISTE
CO0&ESG-LISTA

Figure 3.8 Object programs comespending to Fig. 3.8,

For PROGC, REF1 is handled in exactly the same way.

The reference marked REF2 is processed in a similar
manner.

REF3 is an immediate operand whose value is to be the
difference between ENDA and LISTA (that is, the length of
the list in bytes).

In PROGA, the assembler has all of the information
necessary to compute this value.

During the assembly of PROGB (and PROGC), the
values of the labels are unknown. In these programs, the
expression must be assembled as an external reference
(with_two Modification records) even though the final
result will be an absolute value independent of the
locations at which the programs are loaded.

Consider REFA4.
The assembler for PROGA can evaluate all of the

Written by WWF 13

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

expression in REF4 except for the value of LISTC. This
results in an initial value of ‘000014'H and one
Modification record.

The same expression in PROGB contains no terms that
can be evaluated by the assembler. The object code
therefore contains an initial value of 000000 and three
Modification records.

For PROGC, the assembler can supply the value of
LISTC relative to the beginning of the program (but not
the actual address, which is not known until the program
is loaded). The initial value of this data word contains the
relative address of LISTC (‘000030’'H). Modification
records instruct the loader to add the beginning address
of the program (i.e., the value of PROGC), to add the
value of ENDA, and to subtract the value of LISTA.

® Fig 3.10(a) shows these three programs as they might
appear in memory after loading and linking. PROGA has
been loaded starting at address 4000, with PROGB and
PROGC immediately following.

Mamory
sddress Contents

aooDo ENEANERKK EXENXENE HERXXNKEN EXANXNX X

- - - -
- L - - -
3FFO
G000 fevesnees ossrecsssr sesmsres smsssmms
BOI0 feveadsceen sasesmss sssmssms mamarwal
L0200 D3IZDLDFT I040CTDS QO0l&.ces cassamas l4+— PROGA
G030 fevesssens ssssssse ssssssss sssswmas
SO0 Jevevwcns swssssass ssasrssEs ssssmEEs

b 4 WH X

4050 Jeswssanss po&l2600 0O0B0040 SLOO0OD0O0&
4060 OCDOBA- . s.escies osacansma ssmmswbws
BOT0 Jesssscss ssssssss sassssms sermasw
S0BD Jassnssss sesssssan smssseas SasaaiBEs
4090 Jesenmens wmressene « 031040 AODTTIOZT
40M0 DIIDOOIE Liwieswse ssmsmssn sssswmsns
ADBD Jisssasas ssmssvas sEssEsEE sedpSEEE
4D0CO Jesssas=s Sessssms ssssssms EmaETAEE
d0DD flescass oD 41260000 OBOO&051 O0ODOOLOD
ADED QOBN.cvs sssassas sus ssmms mmrmemew
AOPD Jessnoineis sumsssws S— N &0&0TT10
4100 SOOTOSLD DOLlksiis awssrans sonsises —PROGC
Bll0 Jessesases sssssmss sEsssaam ssedsEsE
4120 Jecsssonss DD4AL2600 OOCBODED 51000004
4130 I}ODOE;:- AEEXEEENE NEXXEX X EXNEXENEN
G140 KRN NN AXREEEXNEXR KEXIXXEE XX HERERX

+— PROGEB

Figure 3.10(a) Programs from Fig. 3.B after linking and loading.

Written by WWF 14

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

® For example, the value for reference REF4 in PROGA is
located at address 4054 (the beginning address of
PROGA plus 0054). Fig 3.10(b) shows the details of how
this value is computed.

Object programs Memory contents
FAOGA HFFIDGA ee 0000
(REF4) b
T@g@w T o (REFY
+ 405Hevassnann m.‘-jjl‘*l-lllli

|
H |
I
)

[
Fs + 112
K .'ﬁ*m {Actual address

7 - ol LISTC)
!
/
I'r Load addresses
l PROGA 004000
1'-\ PROGE 004063
.
FROGD D40E
Figure 3.10{b} Relocation and linking operations performed on REF4
from PROGA.

The initial value (from the Text record) is 000014. To this
Is added the address assigned to LISTC, which 4112 (the
beqginning address of PROGC plus 30).

3.2.3 Algorithm and Data Structures for a Linking
Loader

® The algorithm for a linking loader is considerably more
complicated than the absolute loader algorithm discussed
in Section 3.1.

® A linking loader usually makes two passes over its input,

just as an assembler does. In terms of general function,
Written by WWF 15

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

the two passes of a linking loader are quite similar to the
two passes of an assembler:

Pass 1 assigns addresses to all external symbols.
Pass 2 performs the actual loading, relocation, and
linking.

® The main data structure needed for our linking loader is
an external symbol table ESTAB.

This table, which is analogous to SYMTAB in our
assembler algorithm, is used to store the name and
address of each external symbol in the set of control
sections being loaded.

A hashed organization is typically used for this table.

Two other important variables are PROGADDR (program
load address) and CSADDR (control section address).

PROGADDR is the beginning address in memory where
the linked program is to be loaded. Its value is supplied to
the loader by the OS.

CSADDR contains the starting address assighed to the
control section currently being scanned by the loader.
This value is added to all relative addresses within the
control section to convert them to actual addresses.

® The algorithm is presented in Fig 3.11.

® During Pass 1 (Fig 3.11(a)), the loader is concerned only
with Header and Define record types in the control
sections.

Written by WWF 16

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

Con.tml Symbol

section name Address Length

PROGA 4000 D0a3
LISTA 4040
ENDA 4054

PROCGB 4063 Q07F
LISTE 40C3
ENDB 4003

PROGC 40E2 oos1
LISTC 4112
ENDC 4124

Pass 1:
bagin

gekt PRCGADDR from cperabing swystem
seb CSADDE to PROGADDRE {for first contral section}
while not end of irnput do
begin
read next input record {Headsr record for control secticn)
et CSLTH to control secticn length
search ESTAR for control sectiorn name
if foumd then
zet error flag (duplicate external symbal }
alee
enter control secticn name into ESTAE with value CSADDR
while record tvpe = ‘E* do
begin
read next input record
if record type = "D’ than
for each symbol in the record do
bagin
search ESTAE for symbol name
if fournd then
sek error flag (duplicate exterrnal sywhbol)
alsa
enter symixcl into ESTRAE with value
[CEACDR + indicated addre=ss)
and {for}
and {while = “E°}
add ..C‘EL'_"H Lo CSADDR (starting address for next contrel saction}
end {wnile not EOF]
and {Pass 1}

Figure 3.11{a} Algorithm for Pass 1 of a linking loader.

1) The beginning load address for the linked program
(PROGADDR) is obtained from the OS. This becomes
the starting address (CSADDR) for the first control

section in the input sequence.

2) The control section name from Header record is
entered into ESTAB, with value given by CSADDR. All
external symbols appearing in the Define record for the
control section are also entered into ESTAB. Their
addresses are obtained by adding the value specified in
the Define record to CSADDR.

3) When the End record is read, the control section length

Written by WWF 17

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

CSLTH (which was saved from the End record) is added
to CSADDR. This calculation gives the starting address
for the next control section in sequence.

® At the end of Pass 1, ESTAB contains all external
symbols defined in the set of control sections together
with the address assigned to each.

® Many loaders include as an option the ability to print a
load map that shows these symbols and their addresses.
For the example of Figs 3.9 and 3.10, such a load map
might look like as shown on the top of page 143.

® Pass 2 (Fig 3.11(b)) of our loader performs the actual
loading, relocation, and linking of the program.

Pass 2:

bagin
set CBADDR to PROGADCER
set EXECATOR to PROGADOR
while not end of input da
bagin
read next input record (Header rscord]
sat CELTH Lo eontrol secticn length
while record type 2 'E’' da
begin
read npaxt input record
if record kype = 'T" then
bagin
{if cbject code iz in character form, convert
inte internal representation]
movre ohject code from record to locaticn
(CEATDE + especified address)
and {if 'T*}
alse 1f record type = "M’ then
bagin
search ESTAE for medifying symbol name
if found then
&2d or subtract symbol walue at logation
(CSATIDR + cpecified address|
alsa
get error Flag (undefined external symbol)
end {if 'M"}
end {while # "E"}
if an address is specified (in End record} then
set EXECADDR to (CSATDE + specified addrese)
add CSLTH to CSADDER
end (while not BOF)
jump to location given by EXECATOR {to start execution of loaded program]
end (Pass 2}

Flgure 3.11(b) Algerithm for Fass 2 of a linking loader.
Written by WWF 18

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

1) As each Text record is read, the object code is moved
to the specified address (plus the current value of
CSADDR).

2) When a Modification record is encountered, the symbol
whose value is to be used for modification is looked up in
ESTAB.

3) This value is then added to or subtracted from the
indicated location in memory.

4) The last step performed by the loader is usually the
transferring of control to the loaded program to begin
execution.

® The End record for each control section may contain the
address of the first instruction in that control section to be
executed. Our loader takes this as the transfer point to
begin execution.

If more than one control section specifies a transfer
address, the loader arbitrarily uses the last one
encountered.

If no control section contains a transfer address, the
loader uses the beginning of the linked program (i.e.,
PROGADDR) as the transfer point.

Normally, a transfer address would be placed in the End
record for a main program, but not for a subroutine.

® This algorithm can be made more efficient. Assign a
reference number, which is used (instead of the symbol
name) in Modification records, to each external symbol
referred to in a control section.

Suppose we always assign the reference number 01 to
the control section name.

Fig 3.12 shows the object programs from 3.9 with this

Written by WWF 19

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

change.

ROCA pODO 00063
ISTA DODOAGENDA o00s&

ROZLISTS B PALISTC QSENDC

;'p-ﬂ-ﬂll:ll 200A03201L077100004050014

ROCGE Lo Lalv Lo ooo7F ¥
ISTH QD6 NDB oDoTro

RDZLISTA DIENDA OLLISTC DSENDC
-
;pnousqpqpsLnnnnq;rzuzgpSInnuun
oooT FOoQOoOQ FFFFAFFFFFEFFFFF DOoD&ED
cooD3 %D {-- 2 ar o o

Lelled e B |
ooy

HOO0007
ﬁﬂ%%ﬁ

0007
unu?;pg—ﬂ

Qoo
ooDorF
coQT H

0QoT
agoT
QooT +

MDOOOT -ﬂE
K

ROGC HO0000000005 L
I1STC oDy NDC Do0Ds 2
2LISTA DIE A LALTSTE DSENDE

;paﬂalqpqp:lnannqg?Lunuu@pstnnnnu

0D0042,0E00G03000000800001 LO00C0CL0C0GD
nnnlgpiku
unu;
nnn: EI
0002 1L
ununzﬂ
Eg
E

Mu#lﬂ

00 O

 Tele B JEI
Qo044 +03
Q004 [=F§
oo0a {31
Dnntqpqgu-ﬁ
nuu4
ﬂﬂni

Figure 3.12 Object programs corresponding to Fig. 3.8 using reference
numbers for code modification. (Reference numbers are underfined for

easier reading.)
Written by WWF 20

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

3.3 Machine-Independent Loader Features

® |oading and linking are often thought of as OS service
functions. Therefore, most loaders include fewer different
features than are found in a typical assembler. They
include the use of an automatic library search process for
handling external reference and some _common_options
that can be selected at the time of loading and linking.

3.3.1 Automatic Library Search

® Many linking loaders can automatically incorporate
routines from a subprogram library into the program being
loaded.

® Linking loaders that support automatic library search must
keep track of external symbols that are referred to, but not
defined, in the primary input to the loader.

® At the end of Pass 1, the symbols in ESTAB that remain
undefined represent unresolved external references.

The loader searches the library or libraries specified for
routines that contain the definitions of these symbols, and
processes the subroutines found by this search exactly as
if they had been part of the primary input stream.

Note that the subroutines fetched from a library in this
way may themselves contain external references. It is
therefore necessary to repeat the library search process
until all references are resolved.

If unresolved external references remain after the library
search is completed, these must be treated as errors.

3.3.2 Loader Options

® Many loaders allow the user to specify options that modify

the standard processing described in Section 3.2.
Written by WWF 21

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

® Typical loader option 1: allows the selection of alternative
sources of input. EX.,

INCLUDE program-name (library-name)

might direct the loader to read the designated object
program from a library and treat it as if it were part of the
primary loader input.

® Loader option 2: allows the user to delete external
symbols or entire control sections. EXx.,

DELETE csect-name

might instruct the loader to delete the named control
section(s) from the set of programs being loaded.

CHANGE namel, name?2

might cause the external symbol namel to be changed to
name2 wherever it appears in the object programs.

® |oader option 3: involves the automatic inclusion of
library routines to satisfy external references. Ex.,

LIBRARY MYLIB

Such user-specified libraries are normally searched
before the standard system libraries. This allows the user
to use special versions of the standard routines.

NOCALL STDDEYV, PLOT, CORREL

To instruct the loader that these external references are to
remain unresolved. This avoids the overhead of loading
and linking the unneeded routines, and saves the
memory space that would otherwise be required.

3.4 Loader Design Options
® Linking loaders perform all linking and relocation at load

Written by WWF 22

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

time. There are two alternatives: Linkage editors, which
perform linking prior to load time, and dynamic linking, in
which the linking function is performed at execution time.

® Precondition: The source program is first assembled or
compiled, producing an object program.

A linking loader performs all linking and relocation
operations, including automatic library search if specified,
and loads the linked program directly into memory for
execution.

A linkage editor produces a linked version of the program
(load module or executable image), which is written to a
file or library for later execution.

® The essential difference between a linkage editor and a
linking loader is illustrated in Fig 3.13.

Object
programia)

i P
Linking - Linkage
Libsrary oader Library s o
Memory

(a)

Ralocating
loader

b

Mamory

(1]

Figure 3.13 Processing of an object program using (a) linking loader
and (b) linkage editor.

Written by WWF 23

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

3.4.1 Linkage Editors

® The linkage editor performs relocation of all control
sections relative to the start of the linked program. Thus,
all items that need to be modified at load time have values
that are relative to the start of the linked program.

This means that the loading can be accomplished in one
pass with no external symbol table required.

If a program is to be executed many times without being
reassembled, the use of a linkage editor substantially
reduces the overhead required.

® Linkage editors can perform many useful functions
besides simply preparing an object program for execution.
EX., a typical sequence of linkage editor commands used:

INCLUDE PLANNER (PROGLIB)

DELETE PROJECT {delete from existing PLANNER}
INCLUDE PROJECT (NEWLIB) {include new version}
REPLACE PLANNER (PROGLIB)

® Linkage editors can also be used to build packages of
subroutines or_other_control sections that are generally
used together. This can be useful when dealing with
subroutine libraries that support high-level programming
languages.

® Linkage editors often include a variety of other options
and commands like those discussed for linking loaders.
Compared to linking loaders, linkage editors in_general
tend to offer more flexibility and control.

3.4.2 Dynamic Linking

® Linkage editors perform linking operations before the
program is loaded for execution.

Linking loaders perform these same operations at load

Written by WWF 24

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

time.

Dynamic linking, dynamic loading, or load on call
postpones the linking function until execution time: a
subroutine is loaded and linked to the rest of the program
when it is first called.

® Dynamic linking is often used to allow several executing
programs to share one copy of a subroutine or library, ex.
run-time support routines for a high-level language like C.

® \With a program that allows its user to interactively call any
of the subroutines of a large mathematical and statistical
library, all of the library subroutines could potentially be
needed, but only a few will actually be used in any one
execution.

Dynamic linking can avoid the necessity of loading the
entire library for each execution except those necessary
subroutines.

® Fig 3.14 illustrates a method in which routines that are to
be dynamically loaded must be called via an OS service

reqguest.

Written by WWF 25

Load-and-call
ERRHANDL

Dwnamic
loadar

Lisar
program

ERRHANDL

Cynamic
loader
{part ol tha
oparating
system)

Liser
program

Cynamic
lpadar

U=er
program

ERRHANDL

(d}

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

User
program

ERRHANDL

()
Load-and-call
ERRHAMNDL
Usar
program
EARHANDL ki3

{e)

Figure 3.14 Loading and calling of a subroutine using dynamic linking.

Written by WWF

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

Fig 3.14(a): Instead of executing a JSUB instruction
referring to an external symbol, the program makes a
load-and-call service request to OS. The parameter of
this request is the symbolic name of the routine to be
called.

Fig 3.14(b): OS examines its internal tables to determine
whether or not the routine is already loaded. If necessary,
the routine is loaded from the specified user or system
libraries.

Fig 3.14(c): Control is then passed from OS to the routine
being called

Fig 3.14(d): When the called subroutine completes it
processing, it returns to its caller (i.e., OS). OS then
returns control to the program that issued the request.

Fig 3.14(e): If a subroutine is still in memory, a second call
to it may not require another load operation. Control may
simply be passed from the dynamic loader to the called
routine.

3.4.3 Bootstrap Loaders

Given an idle computer with no program in memory, how
do we get things started?

On some computers, an absolute loader program is
permanently resident in a read-only memory (ROM).
When some hardware signal occurs, the machine begins
to execute this ROM program. This is referred to as a
bootstrap loader.

3.5 Implementation Examples

(Skip)

Written by WWF 27

	Chapter 3 – Loaders and Linkers
	3.1 Introduction
	3.1.1 Design of an Absolute Loader
	3.1.2 A Simple Bootstrap Loader
	3.2 Machine-Dependent Loader Features
	3.2.1 Relocation
	3.2.2 Program Linking
	3.2.3 Algorithm and Data Structures for a Linking Loader
	3.3 Machine-Independent Loader Features
	3.3.1 Automatic Library Search
	3.3.2 Loader Options
	3.4 Loader Design Options
	3.4.1 Linkage Editors
	3.4.2 Dynamic Linking
	3.4.3 Bootstrap Loaders
	3.5 Implementation Examples

