
System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Chapter 3 – Loaders and Linkers

 Three fundamental processes:
Loading – brings the object program into memory for
execution.
Relocation – modifies the object program so that it can be
loaded at an address different from the location originally
specified.
Linking – combines two or more separate object
programs and supplies the information needed to allow
references between them.

 A loader is a system program that performs the loading
function. Many loaders also support relocation and linking.
Some systems have a linker to perform the linking
operations and a separate loader to handle relocation and
loading.

3.1 Introduction

 The most fundamental functions of a loader – bringing an
object program into memory and starting its execution.

3.1.1 Design of an Absolute Loader
 An example object program is shown in Fig 3.1(a).

Written by WWF １

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 For a simple absolute loader, all functions are
accomplished in a single pass as follows:
1) The Header record of object programs is checked to

verify that the correct program has been presented for
loading.

2) As each Text record is read, the object code it contains
is moved to the indicated address in memory.

3) When the End record is encountered, the loader jumps
to the specified address to begin execution of the
loaded program.

 Fig 3.1(b) shows a representation of the program from Fig
3.1(a) after loading.

 Fig 3.2 shows an algorithm for the absolute loader we

have discussed.

Written by WWF ２

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 It is very important to realize that in Fig 3.1(a), each

printed character represents one byte of the object
program record. In Fig 3.1(b), on the other hand, each
printed character represents one hexadecimal digit in
memory (a half-byte).

 Therefore, to save space and execution time of loaders,
most machines store object programs in a binary form,
with each byte of object code stored as a single byte in
the object program.

3.1.2 A Simple Bootstrap Loader
 When a computer is first turned on or restarted, a special

type of absolute loader, called a bootstrap loader, is
executed. This bootstrap loads the first program to be run
by the computer – usually an operating system.

 Fig 3.3 shows the source code for our bootstrap loader.
The bootstrap itself begins at address 0 in the memory.

Written by WWF ３

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Note: each byte of object code to be loaded is
represented on device F1 as two hexadecimal digits just
as it is in a Text record of a SIC object program.
1) The object code from device F1 is always loaded into
consecutive bytes of memory, starting at address 80. The

Written by WWF ４

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ５

main loop of the bootstrap keeps the address of the next
memory location to be loaded in register X.
2) After all of the object code from device F1 has been
loaded, the bootstrap jumps to address 80, which begins
the execution of the program that was loaded.

 Much of the work of the bootstrap loader is performed by
the subroutine GETC.
GETC is used to read and convert a pair of characters
from device F1 representing 1 byte of object code to be
loaded. For example, two bytes =C“D8” ‘4438’H
converting to one byte ‘D8’H.
The resulting byte is stored at the address currently in
register X, using STCH instruction that refers to location 0
using indexed addressing.
The TIXR instruction is then used to add 1 to the value in
X.

3.2 Machine-Dependent Loader Features

 The absolute loader has several potential disadvantages.
One of the most obvious is the need for the programmer
to specify the actual address at which it will be loaded into
memory.
Writing absolute programs also makes it difficult to use
subroutine libraries efficiently. This could not be done
effectively if all of the subroutines had pre-assigned
absolute addresses.

 The need for program relocation is an indirect
consequence of the change to larger and more powerful
computers. The way relocation is implemented in a loader
is also dependent upon machine characteristics.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ６

3.2.1 Relocation
 Two methods for specifying relocation as part of the

object program.
 The first method: A Modification record (The format is

given in Section 2.3.5.) is used to describe each part of
the object code that must be changed when the program
is relocated.

 Fig 3.4 shows a SIC/XE program we use to illustrate this
first method of specifying relocation.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ７

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Most of the instructions in this program use relative or
immediate addressing.
The only portions of the assembled program that contain
actual addresses are the extended format instructions on
lines 15, 35, and 65. Thus these are the only items whose
values are affected by relocation.

 Fig 3.5 displays the object program corresponding to the
source in Fig 3.4.

Each Modification record specifies the starting address
and length of the field whose value is to be altered.
It then describes the modification to be performed.
In this example, all modifications add the value of the
symbol COPY, which represents the starting address of
the program.

 The Modification record is not well suited for use with all
machine architectures. Consider, for example, the
program in Fig 3.6. This is a relocatable program written
for standard version for SIC.

Written by WWF ８

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

The important difference between this example and the
one in Fig 3.4 is that the standard SIC machine does not
use relative addressing.
In this program the addresses in all the instructions
except RSUB must modified when the program is

Written by WWF ９

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

relocated. This would require 31 Modification records,
which results in an object program more than twice as
large as the one in Fig 3.5.

 The second method: Fig 3.7 shows this method applied to
our SIC program example.

There are no Modification records.
The Text records are the same as before except that
there is a relocation bit associated with each word of
object code.
Since all SIC instructions occupy one word, this means
that there is one relocation bit for each possible
instruction.

 The relocation bits are gathered together into a bit mask
following the length indicator in each Text record. In Fig
3.7 this mask is represented (in character form) as three
hexadecimal digits.

 If the relocation bit corresponding to a word of object code
is set to 1, the program’s starting address is to be added
to this word when the program is relocated.
A bit value of 0 indicates that no modification is
necessary.
If a Text record contains fewer than 12 words of object
code, the bits corresponding to unused words are set to
0.

Written by WWF １０

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

For example, the bit mask FFC (representing the bit string
111111111100) in the first Text record specifies that all 10
words of object code are to be modified during relocation.

 Example: note that the LDX instruction on line 210 (Fig
3.6) begins a new Text record. If it were placed in the
preceding Text record, it would not be properly aligned to
correspond to a relocation bit because of the 1-byte data
value generated from line 185.

3.2.2 Program Linking
 Consider the three (separately assembled) programs in

Fig 3.8, each of which consists of a single control section.

Written by WWF １１

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 Consider first the reference marked REF1.

For the first program (PROGA), (1) REF1 is simply a
reference to a label within the program. (2) It is
assembled in the usual way as a PC relative instruction.
(3) No modification for relocation or linking is necessary.
In PROGB, the same operand refers to an external
symbol. (1) The assembler uses an extended-format
instruction with address field set to 00000. (2) The object
program for PROGB (Fig 3.9) contains a Modification
record instructing the loader to add the value of the
symbol LISTA to this address field when the program is
linked.

Written by WWF １２

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

For PROGC, REF1 is handled in exactly the same way.

 The reference marked REF2 is processed in a similar
manner.

 REF3 is an immediate operand whose value is to be the
difference between ENDA and LISTA (that is, the length of
the list in bytes).
In PROGA, the assembler has all of the information
necessary to compute this value.
During the assembly of PROGB (and PROGC), the
values of the labels are unknown. In these programs, the
expression must be assembled as an external reference
(with two Modification records) even though the final
result will be an absolute value independent of the
locations at which the programs are loaded.

 Consider REF4.
The assembler for PROGA can evaluate all of the

Written by WWF １３

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

expression in REF4 except for the value of LISTC. This
results in an initial value of ‘000014’H and one
Modification record.
The same expression in PROGB contains no terms that
can be evaluated by the assembler. The object code
therefore contains an initial value of 000000 and three
Modification records.
For PROGC, the assembler can supply the value of
LISTC relative to the beginning of the program (but not
the actual address, which is not known until the program
is loaded). The initial value of this data word contains the
relative address of LISTC (‘000030’H). Modification
records instruct the loader to add the beginning address
of the program (i.e., the value of PROGC), to add the
value of ENDA, and to subtract the value of LISTA.

 Fig 3.10(a) shows these three programs as they might
appear in memory after loading and linking. PROGA has
been loaded starting at address 4000, with PROGB and
PROGC immediately following.

Written by WWF １４

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

 For example, the value for reference REF4 in PROGA is
located at address 4054 (the beginning address of
PROGA plus 0054). Fig 3.10(b) shows the details of how
this value is computed.

The initial value (from the Text record) is 000014. To this
is added the address assigned to LISTC, which 4112 (the
beginning address of PROGC plus 30).

3.2.3 Algorithm and Data Structures for a Linking
Loader

 The algorithm for a linking loader is considerably more
complicated than the absolute loader algorithm discussed
in Section 3.1.

Written by WWF １５

 A linking loader usually makes two passes over its input,
just as an assembler does. In terms of general function,

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF １６

the two passes of a linking loader are quite similar to the
two passes of an assembler:
Pass 1 assigns addresses to all external symbols.
Pass 2 performs the actual loading, relocation, and
linking.

 The main data structure needed for our linking loader is
an external symbol table ESTAB.
This table, which is analogous to SYMTAB in our
assembler algorithm, is used to store the name and
address of each external symbol in the set of control
sections being loaded.
A hashed organization is typically used for this table.
Two other important variables are PROGADDR (program
load address) and CSADDR (control section address).
PROGADDR is the beginning address in memory where
the linked program is to be loaded. Its value is supplied to
the loader by the OS.
CSADDR contains the starting address assigned to the
control section currently being scanned by the loader.
This value is added to all relative addresses within the
control section to convert them to actual addresses.

 The algorithm is presented in Fig 3.11.
 During Pass 1 (Fig 3.11(a)), the loader is concerned only

with Header and Define record types in the control
sections.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

1) The beginning load address for the linked program
(PROGADDR) is obtained from the OS. This becomes
the starting address (CSADDR) for the first control
section in the input sequence.
2) The control section name from Header record is
entered into ESTAB, with value given by CSADDR. All
external symbols appearing in the Define record for the
control section are also entered into ESTAB. Their
addresses are obtained by adding the value specified in
the Define record to CSADDR.
3) When the End record is read, the control section length

Written by WWF １７

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

CSLTH (which was saved from the End record) is added
to CSADDR. This calculation gives the starting address
for the next control section in sequence.

 At the end of Pass 1, ESTAB contains all external
symbols defined in the set of control sections together
with the address assigned to each.

 Many loaders include as an option the ability to print a
load map that shows these symbols and their addresses.
For the example of Figs 3.9 and 3.10, such a load map
might look like as shown on the top of page 143.

 Pass 2 (Fig 3.11(b)) of our loader performs the actual
loading, relocation, and linking of the program.

Written by WWF １８

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF １９

1) As each Text record is read, the object code is moved
to the specified address (plus the current value of
CSADDR).
2) When a Modification record is encountered, the symbol
whose value is to be used for modification is looked up in
ESTAB.
3) This value is then added to or subtracted from the
indicated location in memory.
4) The last step performed by the loader is usually the
transferring of control to the loaded program to begin
execution.

 The End record for each control section may contain the
address of the first instruction in that control section to be
executed. Our loader takes this as the transfer point to
begin execution.
If more than one control section specifies a transfer
address, the loader arbitrarily uses the last one
encountered.
If no control section contains a transfer address, the
loader uses the beginning of the linked program (i.e.,
PROGADDR) as the transfer point.
Normally, a transfer address would be placed in the End
record for a main program, but not for a subroutine.

 This algorithm can be made more efficient. Assign a
reference number, which is used (instead of the symbol
name) in Modification records, to each external symbol
referred to in a control section.
Suppose we always assign the reference number 01 to
the control section name.
Fig 3.12 shows the object programs from 3.9 with this

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

change.

Written by WWF ２０

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２１

3.3 Machine-Independent Loader Features

 Loading and linking are often thought of as OS service
functions. Therefore, most loaders include fewer different
features than are found in a typical assembler. They
include the use of an automatic library search process for
handling external reference and some common options
that can be selected at the time of loading and linking.

3.3.1 Automatic Library Search
 Many linking loaders can automatically incorporate

routines from a subprogram library into the program being
loaded.

 Linking loaders that support automatic library search must
keep track of external symbols that are referred to, but not
defined, in the primary input to the loader.

 At the end of Pass 1, the symbols in ESTAB that remain
undefined represent unresolved external references.
The loader searches the library or libraries specified for
routines that contain the definitions of these symbols, and
processes the subroutines found by this search exactly as
if they had been part of the primary input stream.
Note that the subroutines fetched from a library in this
way may themselves contain external references. It is
therefore necessary to repeat the library search process
until all references are resolved.
If unresolved external references remain after the library
search is completed, these must be treated as errors.

3.3.2 Loader Options
 Many loaders allow the user to specify options that modify

the standard processing described in Section 3.2.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２２

 Typical loader option 1: allows the selection of alternative
sources of input. Ex.,

INCLUDE program-name (library-name)
might direct the loader to read the designated object
program from a library and treat it as if it were part of the
primary loader input.

 Loader option 2: allows the user to delete external
symbols or entire control sections. Ex.,

DELETE csect-name
might instruct the loader to delete the named control
section(s) from the set of programs being loaded.

 CHANGE name1, name2
might cause the external symbol name1 to be changed to
name2 wherever it appears in the object programs.

 Loader option 3: involves the automatic inclusion of
library routines to satisfy external references. Ex.,

LIBRARY MYLIB
Such user-specified libraries are normally searched
before the standard system libraries. This allows the user
to use special versions of the standard routines.

 NOCALL STDDEV, PLOT, CORREL
To instruct the loader that these external references are to
remain unresolved. This avoids the overhead of loading
and linking the unneeded routines, and saves the
memory space that would otherwise be required.

3.4 Loader Design Options

 Linking loaders perform all linking and relocation at load

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

time. There are two alternatives: Linkage editors, which
perform linking prior to load time, and dynamic linking, in
which the linking function is performed at execution time.

 Precondition: The source program is first assembled or
compiled, producing an object program.
A linking loader performs all linking and relocation
operations, including automatic library search if specified,
and loads the linked program directly into memory for
execution.
A linkage editor produces a linked version of the program
(load module or executable image), which is written to a
file or library for later execution.

 The essential difference between a linkage editor and a
linking loader is illustrated in Fig 3.13.

Written by WWF ２３

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２４

3.4.1 Linkage Editors
 The linkage editor performs relocation of all control

sections relative to the start of the linked program. Thus,
all items that need to be modified at load time have values
that are relative to the start of the linked program.
This means that the loading can be accomplished in one
pass with no external symbol table required.
If a program is to be executed many times without being
reassembled, the use of a linkage editor substantially
reduces the overhead required.

 Linkage editors can perform many useful functions
besides simply preparing an object program for execution.
Ex., a typical sequence of linkage editor commands used:

INCLUDE PLANNER (PROGLIB)
DELETE PROJECT {delete from existing PLANNER}
INCLUDE PROJECT (NEWLIB) {include new version}
REPLACE PLANNER (PROGLIB)

 Linkage editors can also be used to build packages of
subroutines or other control sections that are generally
used together. This can be useful when dealing with
subroutine libraries that support high-level programming
languages.

 Linkage editors often include a variety of other options
and commands like those discussed for linking loaders.
Compared to linking loaders, linkage editors in general
tend to offer more flexibility and control.

3.4.2 Dynamic Linking
 Linkage editors perform linking operations before the

program is loaded for execution.
Linking loaders perform these same operations at load

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２５

time.
Dynamic linking, dynamic loading, or load on call
postpones the linking function until execution time: a
subroutine is loaded and linked to the rest of the program
when it is first called.

 Dynamic linking is often used to allow several executing
programs to share one copy of a subroutine or library, ex.
run-time support routines for a high-level language like C.

 With a program that allows its user to interactively call any
of the subroutines of a large mathematical and statistical
library, all of the library subroutines could potentially be
needed, but only a few will actually be used in any one
execution.
Dynamic linking can avoid the necessity of loading the
entire library for each execution except those necessary
subroutines.

 Fig 3.14 illustrates a method in which routines that are to
be dynamically loaded must be called via an OS service
request.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２６

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Written by WWF ２７

Fig 3.14(a): Instead of executing a JSUB instruction
referring to an external symbol, the program makes a
load-and-call service request to OS. The parameter of
this request is the symbolic name of the routine to be
called.
Fig 3.14(b): OS examines its internal tables to determine
whether or not the routine is already loaded. If necessary,
the routine is loaded from the specified user or system
libraries.
Fig 3.14(c): Control is then passed from OS to the routine
being called
Fig 3.14(d): When the called subroutine completes it
processing, it returns to its caller (i.e., OS). OS then
returns control to the program that issued the request.
Fig 3.14(e): If a subroutine is still in memory, a second call
to it may not require another load operation. Control may
simply be passed from the dynamic loader to the called
routine.

3.4.3 Bootstrap Loaders
 Given an idle computer with no program in memory, how

do we get things started?
 On some computers, an absolute loader program is

permanently resident in a read-only memory (ROM).
When some hardware signal occurs, the machine begins
to execute this ROM program. This is referred to as a
bootstrap loader.

3.5 Implementation Examples

(Skip)

	Chapter 3 – Loaders and Linkers
	3.1 Introduction
	3.1.1 Design of an Absolute Loader
	3.1.2 A Simple Bootstrap Loader
	3.2 Machine-Dependent Loader Features
	3.2.1 Relocation
	3.2.2 Program Linking
	3.2.3 Algorithm and Data Structures for a Linking Loader
	3.3 Machine-Independent Loader Features
	3.3.1 Automatic Library Search
	3.3.2 Loader Options
	3.4 Loader Design Options
	3.4.1 Linkage Editors
	3.4.2 Dynamic Linking
	3.4.3 Bootstrap Loaders
	3.5 Implementation Examples

