System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

Chapter 1 — Background

1.1 Introduction

System software consists of a variety of programs that
support the operation of a computer — Text editor,
Compiler, Loader or Linker, Debugger, Assembler, Marco
processor, Operating system, etc.

The major topics of this course — assemblers, loaders and
linkers, macro processors, compilers, and operating
systems. The other topics including database
management systems, text editors, and interactive
debugging systems are mentioned in Chapter 7.

1.2 System Software and Machine Architecture

One characteristic in which most system software differs
from applications software is machine dependency.

System programs are intended to support the operation
and use of the computer itself, rather than any particular
application. For this reason, they are usually related to the
architecture of the machine on which they are to run.

Because most system software is machine-dependent,
we must include real machines and real piece of software
in our study. We will present the fundamental functions of
each piece of software based on a Simplified Instructional
Computer (SIC) — a hypothetical computer.

1.3 The Simplified Instructional Computer (SIC)

In this section, we describe the architecture of SIC.
SIC comes in two versions: the standard model and an

Written by WWF 1

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

XE version (XE stands for “extra equipment” or “extra
expensive”).

1.3.1 SIC Machine Architecture
Memory

® Memory consists of 8-bit bytes; any 3 consecutive bytes
form a word (24 bits).

® All addresses on SIC are byte addresses; words are
addressed by the location of their lowest numbered byte.

® There are a total of 32,768 (219) bytes in SIC memory.
Register

® There are five registers, all of which have special uses.
® Each register is 24 bits in length.

® See table at the bottom of Page 5.

Mnemonic NMumber Special use
A 0 Accumulator; used for arithmetic operations
X 1 Index register; used for addressing
L 2 Linkage register; the Jump to Subroutine (JSUB)

instruction stores the return address
in this register

PC 8 Program counter; contains the address of the
next instructdon to be fetched for execution

aSW g Status word; cantains a variety of
information, including a Condition Code (CC)

Data Formats

® Integers are stored as 24-bit binary numbers; 2's
complement representation is used for negative values.

® No floating-point hardware on the standard version of
SIC.

Instruction Formats

Written by WWF 2

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

See Page 6.
B 1 15
opcode x address

Addressing Modes

Two addressing modes available; see Page 6.

Mode Indication Target address calculation
Direct x =0 TA = address
Indexed 3 ==, TA = address + (X}

Instruction Set

SIC provides a basic set of instructions that are sufficient
for most simple tasks. (See Appendix Al)

Instructions that load and store registers (LDA, LDX, STA,
STX, etc.).

Instructions for integer arithmetic operations (ADD, SUB,
MUL, DIV). All arithmetic operations involve register A
and a word in memory.

An instruction (COMP) that compares the value in register
A with a word in memory; this instruction sets a condition
code CC to indicate the result (<, =, or >).

Conditional jump instructions (JLT, JEQ, JGT) can test the
setting of CC, and jump accordingly.

JSUB and RSUB are provided to subroutine linkage.

Input and Output

On the standard version of SIC, input and output are
performed by transferring 1 byte at a time to or from the
rightmost 8 bits of register A.

Each device is assigned a unique 8-bit code.

Written by WWF 3

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

® Three I/O instructions: TD (Test Device), RD (Read Data),
WD (Write Data).

1.3.2 SIC/XE Machine Architecture

Memory

® The memory structure for SIC/XE is the same as SIC.
® Maximum memory on a SIC/XE is 1 Mbyte.
Registers

® Additional registers are provided by SIC/XE and shown at
the bottom of Page 7.

Mnemonic Number Special use
B 2 Base register; used for addressing
S 4 General working register—no special use
5 General working register—no special use

3
a]

Floating-point accumulator (48 bits)

Data Formats
® SIC/XE provides the same data formats as SIC.

® In addition, a 48-bit floating-point data type is also
provided. See the top of Page 8.

1 11 36
8| exponent fraction

Instruction Formats

® |n addition to the instruction format of SIC, the new set of
instruction formats for SIC/XE is shown in Page 8~9.

ap

Written by WWF 4

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

8 4 4
(] rl re

Format 3 (3 bytes):

& 111111 12
op njijxiblpla disp

Format 4 (4 bytes):

& 111111 20

op njijxlb|p|e address

The settings of the flag bits:

1) Bit e: to distinguish between Formats 3 and 4. (e=0 >
Format 3, e=1 - Format 4)

Addressing Modes

Two new relative addressing modes (Base relative,
Program- counter relative) are available for use with
instructions assembled using Format 3. See Page 9.

Mode Indication Target address calculation

Base relative b=1,p=0 TA=(B)+disp (0 < disp < 4095)

Program-counter b=0,p=1 TA=(PC)+disp (-2048 < disp <2047)
relative e

Direct addressing mode: bits b and p are both set to 0 to
Formats 3 and 4.

Indexing addressing mode: if bit x is set to 1, the term (X)
Is added in the target address calculation (Formats 3 and
4).

Immediate addressing mode: if bits i=1 and n=0, the
target address itself is used as the operand value; no
memory reference is performed.

Indirect addressing mode: if bits i=0 and n=1, the word at

Written by WWF 5

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

the location given by the target address is fetched; the
value contained in this word is taken as the address of the
operand value.

® Simple addressing mode: if bits i and n are both 0 or both
1, the target address is taken as the location of the
operand.

® Fig 1.1 gives examples of the different addressing modes
available on SIC/XC.

. (B) = 008000
L]
. L 1PCI=m3ﬂm
i -
2 : (%] = D00QS0
3030 003600
-
L] L]
L]
3800 103000
- -
- L
L] -
a L]
- []
8390 | 00C303 |
- L
L]
L L]
L] []
-]
-
Can3 003030
L]
. []
-
L] []
(a}
Machine Insiructlion Value
1 loaded
Hex Blnary into
— T » Target register
ap n i x b p e disp’address address A
032600 aooa0n 1 L 0o ¢ 1 © 0llo 0odo oooc 2600 103000
J3C300 000000 1 1L L 1 ¢ © 001l 0000 CCOO E380 00303
022030 0DODDD 1 o 0o 0 1 © 00D 0OL]l COGo 3030 1030¢0
010030 ooBd0 o 1 4 0 @ 0 Dpooo 0Ol1 COoo 3D 000030
003600 pooacT 0 9 0 0 1 L 9110 o000 0000 3600 1C3000
C310CE03 DOD00C 1 1 0 0 0 1 0000 110 opll 0000 0011 C303 003030

(b)

Figure 1.1 Examples of SIC/XE instructions and addressing modes.

Written by WWF 6

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck
Instruction Set
® SIC/XE provides all of the instructions available on SIC.

® |n addition, there are instructions to load and store the
new registers (LDB, STB, etc) and to perform
floating-point arithmetic operations (ADDF, SUBF, MULF,
DIVF).

® Register-to-register arithmetic operations: ADDR, SUBR,
MULR, DIVR.

® Supervisor call instruction: SVC.
Input and Output
® The I/O instructions for SIC are also available on SIC/XE.

Written by WWF 7

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck
1.3.3 SIC Programming Examples

® Fig 1.2 contains examples of data movement operations
for SIC and SIC/XE. See Page 13.

LDA FIVE LOAn OCHSTANT & INTD REGISTER A
STA ALPHR STCORE I ALFHA
ILICH CHaRZ LOAD CHARACTER ‘2¢ INTO REGISTER &
STCH 4 STCORE I CHARACTEE VARIAELE C1
ALPHR RESHW 1 CYE-WORD VARIABLE
FIVE WOED 5 CONE-WORD CONSTANT
CHARZ BEYTE (el CNE-BYTE CCHSTANT
1 F=ER 1 OMNE-BYTE VARTLEIE
(@)
LA #5 LOATY WALJIE &5 INTO REGISTER A
STA BLPFHA STORE IN ALLFHA
LD& #90 LOoalD ASCII COOE FOR O"ZY INTO BREC A
STCH . STORE IN CEARACTER VAETREBIE C1
ALPHA EESV 1 CONE-WORD VARIABLE
Ly SEER 1 CHE-BYTE VARIABLE
(b)

Figure 1.2 Sample data movement operations for {a} SIC and
(b) SIC/XE.

Written by WWF 8

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

® Fig 1.3: Sample arithmetic operations for (a) SIC and (b)
SIC/XE. See Page 15.

LDE ALTHA LOAD ATPHAR INTO RECGISTER &
ADD INCR ADD TEE WVALUE OF INCR
5UH ONE SUET=aT 1
S5Ta EETA ETCRE IN BETA
LIA CEAMMA LOAD GAMMA INTO RESISTER &
ATD IHNCF ADD THE VAILUE OF INCE
o= CHNE SUBTRACT 1
STA CELTM STORE IM DELTE
7= VIOED 1 CHE-WIORD COMNSTANT
v OHE-WORD VARTAEIES
ALFHA EESW 1
EETA RESW 1
ZEYMA, RESW 9
HELTR REIW 1
IHCR RESW 1
(a)
ins IMCR LOAD VALUE OF INCR INTC REGISTER =3
LD& ALPHA LOAD ALPHA INTD FEGISTEER &
ADDE 5.1 ATD THE VALTE OF INCR
SR #1 SUBTRACT 1
=ThA BETA STORE I BETA
LA GANMA LOAD GAMME INTC REGISTER A
BDDR S, 4 ADDy THE VALUE QOF INCE
211} #1 SURTRACT 1
SThA DELTA STORE IN DELTA
; ONE WORD VARIABLES
SHLEHA RESW il
BELA RESWH 1
CrAMBE RESW 1
DELTA RESW 1
INCR RESW 1

{b)
Figure 1.3 Sample arithmetic operations for (a) SIC and (b) SIG/XE.

Written by WWF 9

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

® Fig 1.4: Sample looping and indexing operations for (a)
SIC and (b) SIC/XE. See Page 16.

LOE ZERO INITIALIZE INDEX REGISTER TO D
MIWECH LDCH STR1, X LoalD CHAREACTER FRCM STEL INTO REEG A
ETCH STR2, X STCORE CHARACTER INTO STREZ
T1X ELEVEN ADD 1 TO INDEX, OCMPARE PESTIT TD 11
JLT MOWECH LOOP IF INDEX IS LESS THANW 11
STEL HITE C"TEST STRIMNG® 11-B¥TE STRING CONSTANT
STER: RESE 11 11-BYTE VARIABLE

. CHE-WORD CQCHSTANTS
ZERD WORD
ELEVEM WORD 11

(a)
LoT 411 INITIATTAE IEGISTER T To 11
L #0 INITIATLTZE INCEX REGISTERE TO O
MOVECH LDCH 8TRL, X LOAD CHARACTER FEOM 3TR1 INTC REG A
STCH STR2, K STORE CHARACTER INTOD STR2
TI¥E T A0OD 1 TO INCEX, COMPARRE EESULT TO 11
JLT MCAECH LOC? IF INDEX IS LESS THAN 11
STR1 BYTE CTEST STHINGS 11-B¥T= STRING COMSTAMNT
STR2 FESE 11 11-B¥T=E VaRTa3[E
(b}

Figure 1.4 Sample looping and Indexing cperations for (a) SIC and
{b) SIC/XE.

Written by WWF 10

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

® Fig 1.5: Sample indexing and looping operations for (a)
SIC and (b) SIC/XE. See Page 17.

LIO®, ZERD INITIALIZE INCEX VALUE TO O
sSTR TRDED
ADCLE L ITNDEX LOAD INDEX VALUE INTO REGISTER X
Lo ALFHA, X LOAD WORD FROM ALFFEA INTO RESISTER A
ATy AETA. X ADD WORD FROM BETA
STA GAMME. , X STORE THE RESOLT IN A WORD TN GAMMA
s, TNDER ADD 2 TC INDEX VALUE
ADD THREE
Sra INDER
oo =300 COMPARE NEW IMNDEX VALUE TC 300
JLT AOLP LOCOP IF INDEX IS LESS THMAN 200
LIRS RESIY L ONE-WORD VARTABLE FOR INDEX VALUE
- ARAAY VARIABIES-—-100 720RDS =ZACH
ALFHA FESW 1CD
BETA RESW 100
AP RESW 100
CHE-WORD CONSTAMTS
= WORD o
K300 WORD 300
THREE VEORD 3
{m})
LS &3 IMITITALIZE REGISTER S TO 3
LoT 300 INITIALIZE REGISTER T TO 300
o ac INITIALIZE INDEX REGISTER TC O
ADDLE LO# ALPHEA, X LOAD WORD FROM ALPHA IMNTO HEGISTER A
ADD BETA, X ADD WORD FROM 3IETA
STA CRMME, | X STORE THE RESULT IN A WORD IN SAMMA
ADDOR 5.X ADD 3 TO INDEX VALLER
mlwolin i) x,Tr OOMPARE HEW INDEX VALTE TO 300
JLT ACDLE LOC?2 IF INDEX VALUE IS LESS THAN 300
; ARRAY VARIABLES—100 WORDS =ZACH
ALPHA RES™ 100
BETA RESW 100 L
GRAMMEA, RESW 100

(b}

Figure 1.5 Sample indaxing and looping operations for (a) SIC and
(b) SICXE.

Written by WWF 11

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

® Fig 1.6: Sample input and output operations for SIC. See
Page 19.

IHLOC2 D INCEY TEST INPUT DEVICE
JEQ INLCOP LODP INNTIL DEVICE IS EEADY
EO INDE READ OWNE BYTE INTO EESISTER A
STCH DATA STORE IYTE THAT VWAS READ
CUTLE TC OLrIDEY TEST OUTPUT DEVICE
JEQ QUTLP LOOP IMTIL DEVICE IS READY
LOCH DATA LOAD DATA BYTE INTO BRECISTER A
T DUTCET WRITE CONE BYTE TO CUTFUT DEVICE
TNDEY EYTE X'Fl INPUT DEVICE NIRBER
OUTDEY EYTE X05" QUTEUT DEVICE MUMBEE
DATE FESB i ONE-BEYTE VARTAELE

Flgure 1.6 Sample input and cutput operations for SIC.

Written by WWF 12

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

® Fig 1.7: Sample subroutine call and record

operations for (a) SIC and (b) SIC/XE. See Page 20.

Written by WWF

READ
RLOOF

INDEV
RECORD

ZERC
K100

RLOCE

THDEY
RECCED

JEB

READ

ZERC
INDEWV
RLOCE
INOEWV
FECCRD, X
K100

X'Fi’
100

0
100

#0
#100
INCEV

X'Fl'
100

CALL READ SUEROUTINE

SUBRODUTINE TU READ _D0-BYTE RECCRD
INITIALIZE INDEX REGISTER TC O
TEST INPUT DEVICE

LOOFP IF DEVICE IS BUSY

FEAD ONE BYTE INTO REGISTEER A
STORE DATA EYTE INTO RECORD

ACD 1 TO INDEX AND CCMPARE TO 100
LOOP IF INDEX IS LESS THAN 100
EXIT FEOM SUEROUTINE

INPUT DEVICE INNUMEER
100-EYTE BUFFER FOR INPUT RECORD
ONE-WORD CONSTANTS

{a)

CALL REARD SUERCUTINE

SUBROUTINE TO READ 100-BYTE RECORD
INITIALIZE INDEX REGISTER TO 0
INITIALIZE REGISTER T TC 100

TEST INFUT DEVICE

LOCP IF DEVICE IS BUSY

READ ONE BYTE INTO REGISTER A
STCRE DATA BYTE INTO RECORD

ADD 1 TO INDEX AND COMPARE TO 100
LOCP IF INDEX IS LESS THAN 100
EXIT FRCM SUEBROUTINE

INFUT DEVICE MUMBER
100-BYTE BUFFER FOR INFUT RECORD

(b)

Figure 1.7 Sample subroutine call and record input operations for
{a) SIC and ({b) SIC/XE.

13

input

System Software — An Introduction to Systems Programming, 3" ed., Leland L. Beck

1.4 Traditional (CISC) Machines

The machines described in this section are classified as
Complex Instruction Set Computers (CISC).

CISC machines generally have a relatively large and
complicated instruction set, several different instruction
formats and lengths, and many different addressing
modes.

The implementation of such architecture in hardware
tends to be complex.

1.5 RISC Machines

The RISC (Reduced Instruction Set Computers) concept,
developed in the early 1980s, was intended to simplify the
design of processors.

This simplified design can result in faster and less
expensive processor development, greater reliability, and
faster instruction execution times.

In general, a RISC system is characterized by a standard,
fixed instruction length (usually equal to one machine
word), and single-cycle execution of most instructions.

Written by WWF 14

	Chapter 1 – Background
	1.1 Introduction
	1.2 System Software and Machine Architecture
	1.3 The Simplified Instructional Computer (SIC)
	1.3.1 SIC Machine Architecture
	1.3.2 SIC/XE Machine Architecture
	1.3.3 SIC Programming Examples
	1.4 Traditional (CISC) Machines
	1.5 RISC Machines

